Abstract:The growing capabilities of large language models (LLMs) present a key challenge of maintaining effective human oversight. Weak-to-strong generalization (W2SG) offers a promising framework for supervising increasingly capable LLMs using weaker ones. Traditional W2SG methods rely on passive learning, where a weak teacher provides noisy demonstrations to train a strong student. This hinders students from employing their knowledge during training and reaching their full potential. In this work, we introduce Alice (pro{A}ctive {l}earning w{i}th tea{c}her's D{e}monstrations), a framework that leverages complementary knowledge between teacher and student to enhance the learning process.We probe the knowledge base of the teacher model by eliciting their uncertainty, and then use these insights together with teachers' responses as demonstrations to guide student models in self-generating improved responses for supervision. In addition, for situations with significant capability gaps between teacher and student models, we introduce cascade Alice, which employs a hierarchical training approach where weak teachers initially supervise intermediate models, who then guide stronger models in sequence. Experimental results demonstrate that our method significantly enhances the W2SG performance, yielding substantial improvements in three key tasks compared to the original W2SG: knowledge-based reasoning (+4.0%), mathematical reasoning (+22.62%), and logical reasoning (+12.11%). This highlights the effectiveness of our new W2SG paradigm that enables more robust knowledge transfer and supervision outcome.
Abstract:Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce VLM$^2$-Bench, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across eight open-source VLMs and GPT-4o, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap where even GPT-4o lags 34.80% behind humans. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
Abstract:The advancement of large language models (LLMs) has made it difficult to differentiate human-written text from AI-generated text. Several AI-text detectors have been developed in response, which typically utilize a fixed global threshold (e.g., {\theta} = 0.5) to classify machine-generated text. However, we find that one universal threshold can fail to account for subgroup-specific distributional variations. For example, when using a fixed threshold, detectors make more false positive errors on shorter human-written text than longer, and more positive classifications on neurotic writing styles than open among long text. These discrepancies can lead to misclassification that disproportionately affects certain groups. We address this critical limitation by introducing FairOPT, an algorithm for group-specific threshold optimization in AI-generated content classifiers. Our approach partitions data into subgroups based on attributes (e.g., text length and writing style) and learns decision thresholds for each group, which enables careful balancing of performance and fairness metrics within each subgroup. In experiments with four AI text classifiers on three datasets, FairOPT enhances overall F1 score and decreases balanced error rate (BER) discrepancy across subgroups. Our framework paves the way for more robust and fair classification criteria in AI-generated output detection.