Abstract:This paper introduces a novel perspective to significantly mitigate catastrophic forgetting in continuous learning (CL), which emphasizes models' capacity to preserve existing knowledge and assimilate new information. Current replay-based methods treat every task and data sample equally and thus can not fully exploit the potential of the replay buffer. In response, we propose COgnitive REplay (CORE), which draws inspiration from human cognitive review processes. CORE includes two key strategies: Adaptive Quantity Allocation and Quality-Focused Data Selection. The former adaptively modulates the replay buffer allocation for each task based on its forgetting rate, while the latter guarantees the inclusion of representative data that best encapsulates the characteristics of each task within the buffer. Our approach achieves an average accuracy of 37.95% on split-CIFAR10, surpassing the best baseline method by 6.52%. Additionally, it significantly enhances the accuracy of the poorest-performing task by 6.30% compared to the top baseline.
Abstract:In recent years, DeepFake technology has achieved unprecedented success in high-quality video synthesis, whereas these methods also pose potential and severe security threats to humanity. DeepFake can be bifurcated into entertainment applications like face swapping and illicit uses such as lip-syncing fraud. However, lip-forgery videos, which neither change identity nor have discernible visual artifacts, present a formidable challenge to existing DeepFake detection methods. Our preliminary experiments have shown that the effectiveness of the existing methods often drastically decreases or even fails when tackling lip-syncing videos. In this paper, for the first time, we propose a novel approach dedicated to lip-forgery identification that exploits the inconsistency between lip movements and audio signals. We also mimic human natural cognition by capturing subtle biological links between lips and head regions to boost accuracy. To better illustrate the effectiveness and advances of our proposed method, we curate a high-quality LipSync dataset by employing the SOTA lip generator. We hope this high-quality and diverse dataset could be well served the further research on this challenging and interesting field. Experimental results show that our approach gives an average accuracy of more than 95.3% in spotting lip-syncing videos, significantly outperforming the baselines. Extensive experiments demonstrate the capability to tackle deepfakes and the robustness in surviving diverse input transformations. Our method achieves an accuracy of up to 90.2% in real-world scenarios (e.g., WeChat video call) and shows its powerful capabilities in real scenario deployment. To facilitate the progress of this research community, we release all resources at https://github.com/AaronComo/LipFD.
Abstract:To circumvent the costly pixel-wise annotations of real-world images in the semantic segmentation task, the Unsupervised Domain Adaptation (UDA) is explored to firstly train a model with the labeled source data (synthetic images) and then adapt it to the unlabeled target data (real images). Among all the techniques being studied, the self-training approach recently secures its position in domain adaptive semantic segmentation, where a model is trained with target domain pseudo-labels. Current advances have mitigated noisy pseudo-labels resulting from the domain gap. However, they still struggle with erroneous pseudo-labels near the decision boundaries of the semantic classifier. In this paper, we tackle this issue by proposing a dual-level interaction for domain adaptation (DIDA) in semantic segmentation. Explicitly, we encourage the different augmented views of the same pixel to have not only similar class prediction (semantic-level) but also akin similarity relationship respected to other pixels (instance-level). As it is impossible to keep features of all pixel instances for a dataset, we novelly design and maintain a labeled instance bank with dynamic updating strategies to selectively store the informative features of instances. Further, DIDA performs cross-level interaction with scattering and gathering techniques to regenerate more reliable pseudolabels. Our method outperforms the state-of-the-art by a notable margin, especially on confusing and long-tailed classes. Code is available at https://github.com/RainJamesY/DIDA.