Abstract:Large language models (LLMs) have learned vast amounts of factual knowledge through self-supervised pre-training on large-scale corpora. Meanwhile, LLMs have also demonstrated excellent multilingual capabilities, which can express the learned knowledge in multiple languages. However, the knowledge storage mechanism in LLMs still remains mysterious. Some researchers attempt to demystify the factual knowledge in LLMs from the perspective of knowledge neurons, and subsequently discover language-agnostic knowledge neurons that store factual knowledge in a form that transcends language barriers. However, the preliminary finding suffers from two limitations: 1) High Uncertainty in Localization Results. Existing study only uses a prompt-based probe to localize knowledge neurons for each fact, while LLMs cannot provide consistent answers for semantically equivalent queries. Thus, it leads to inaccurate localization results with high uncertainty. 2) Lack of Analysis in More Languages. The study only analyzes language-agnostic knowledge neurons on English and Chinese data, without exploring more language families and languages. Naturally, it limits the generalizability of the findings. To address aforementioned problems, we first construct a new benchmark called Rephrased Multilingual LAMA (RML-LAMA), which contains high-quality cloze-style multilingual parallel queries for each fact. Then, we propose a novel method named Multilingual Integrated Gradients with Uncertainty Estimation (MATRICE), which quantifies the uncertainty across queries and languages during knowledge localization. Extensive experiments show that our method can accurately localize language-agnostic knowledge neurons. We also further investigate the role of language-agnostic knowledge neurons in cross-lingual knowledge editing, knowledge enhancement and new knowledge injection.
Abstract:The rapid proliferation of online news has posed significant challenges in tracking the continuous development of news topics. Traditional timeline summarization constructs a chronological summary of the events but often lacks the flexibility to meet the diverse granularity needs. To overcome this limitation, we introduce a new paradigm, Dynamic-granularity TimELine Summarization, (DTELS), which aims to construct adaptive timelines based on user instructions or requirements. This paper establishes a comprehensive benchmark for DTLES that includes: (1) an evaluation framework grounded in journalistic standards to assess the timeline quality across four dimensions: Informativeness, Granular Consistency, Factuality, and Coherence; (2) a large-scale, multi-source dataset with multiple granularity timeline annotations based on a consensus process to facilitate authority; (3) extensive experiments and analysis with two proposed solutions based on Large Language Models (LLMs) and existing state-of-the-art TLS methods. The experimental results demonstrate the effectiveness of LLM-based solutions. However, even the most advanced LLMs struggle to consistently generate timelines that are both informative and granularly consistent, highlighting the challenges of the DTELS task.
Abstract:With the development of large language models, they are widely used as agents in various fields. A key component of agents is memory, which stores vital information but is susceptible to jailbreak attacks. Existing research mainly focuses on single-agent attacks and shared memory attacks. However, real-world scenarios often involve independent memory. In this paper, we propose the Troublemaker Makes Chaos in Honest Town (TMCHT) task, a large-scale, multi-agent, multi-topology text-based attack evaluation framework. TMCHT involves one attacker agent attempting to mislead an entire society of agents. We identify two major challenges in multi-agent attacks: (1) Non-complete graph structure, (2) Large-scale systems. We attribute these challenges to a phenomenon we term toxicity disappearing. To address these issues, we propose an Adversarial Replication Contagious Jailbreak (ARCJ) method, which optimizes the retrieval suffix to make poisoned samples more easily retrieved and optimizes the replication suffix to make poisoned samples have contagious ability. We demonstrate the superiority of our approach in TMCHT, with 23.51%, 18.95%, and 52.93% improvements in line topology, star topology, and 100-agent settings. Encourage community attention to the security of multi-agent systems.
Abstract:Inductive reasoning is an essential capability for large language models (LLMs) to achieve higher intelligence, which requires the model to generalize rules from observed facts and then apply them to unseen examples. We present {\scshape Mirage}, a synthetic dataset that addresses the limitations of previous work, specifically the lack of comprehensive evaluation and flexible test data. In it, we evaluate LLMs' capabilities in both the inductive and deductive stages, allowing for flexible variation in input distribution, task scenario, and task difficulty to analyze the factors influencing LLMs' inductive reasoning. Based on these multi-faceted evaluations, we demonstrate that the LLM is a poor rule-based reasoner. In many cases, when conducting inductive reasoning, they do not rely on a correct rule to answer the unseen case. From the perspectives of different prompting methods, observation numbers, and task forms, models tend to consistently conduct correct deduction without correct inductive rules. Besides, we find that LLMs are good neighbor-based reasoners. In the inductive reasoning process, the model tends to focus on observed facts that are close to the current test example in feature space. By leveraging these similar examples, the model maintains strong inductive capabilities within a localized region, significantly improving its deductive performance.
Abstract:Large language models (LLMs) sometimes demonstrate poor performance on knowledge-intensive tasks, commonsense reasoning is one of them. Researchers typically address these issues by retrieving related knowledge from knowledge graphs or employing self-enhancement methods to elicit knowledge in LLMs. However, noisy knowledge and invalid reasoning issues hamper their ability to answer questions accurately. To this end, we propose a novel method named eliciting, filtering and integrating knowledge in large language model (LINKED). In it, we design a reward model to filter out the noisy knowledge and take the marginal consistent reasoning module to reduce invalid reasoning. With our comprehensive experiments on two complex commonsense reasoning benchmarks, our method outperforms SOTA baselines (up to 9.0% improvement of accuracy). Besides, to measure the positive and negative impact of the injected knowledge, we propose a new metric called effectiveness-preservation score for the knowledge enhancement works. Finally, through extensive experiments, we conduct an in-depth analysis and find many meaningful conclusions about LLMs in commonsense reasoning tasks.
Abstract:LLM have achieved success in many fields but still troubled by problematic content in the training corpora. LLM unlearning aims at reducing their influence and avoid undesirable behaviours. However, existing unlearning methods remain vulnerable to adversarial queries and the unlearned knowledge resurfaces after the manually designed attack queries. As part of a red-team effort to proactively assess the vulnerabilities of unlearned models, we design Dynamic Unlearning Attack (DUA), a dynamic and automated framework to attack these models and evaluate their robustness. It optimizes adversarial suffixes to reintroduce the unlearned knowledge in various scenarios. We find that unlearned knowledge can be recovered in $55.2\%$ of the questions, even without revealing the unlearned model's parameters. In response to this vulnerability, we propose Latent Adversarial Unlearning (LAU), a universal framework that effectively enhances the robustness of the unlearned process. It formulates the unlearning process as a min-max optimization problem and resolves it through two stages: an attack stage, where perturbation vectors are trained and added to the latent space of LLMs to recover the unlearned knowledge, and a defense stage, where previously trained perturbation vectors are used to enhance unlearned model's robustness. With our LAU framework, we obtain two robust unlearning methods, AdvGA and AdvNPO. We conduct extensive experiments across multiple unlearning benchmarks and various models, and demonstrate that they improve the unlearning effectiveness by over $53.5\%$, cause only less than a $11.6\%$ reduction in neighboring knowledge, and have almost no impact on the model's general capabilities.
Abstract:Planning, as the core module of agents, is crucial in various fields such as embodied agents, web navigation, and tool using. With the development of large language models (LLMs), some researchers treat large language models as intelligent agents to stimulate and evaluate their planning capabilities. However, the planning mechanism is still unclear. In this work, we focus on exploring the look-ahead planning mechanism in large language models from the perspectives of information flow and internal representations. First, we study how planning is done internally by analyzing the multi-layer perception (MLP) and multi-head self-attention (MHSA) components at the last token. We find that the output of MHSA in the middle layers at the last token can directly decode the decision to some extent. Based on this discovery, we further trace the source of MHSA by information flow, and we reveal that MHSA mainly extracts information from spans of the goal states and recent steps. According to information flow, we continue to study what information is encoded within it. Specifically, we explore whether future decisions have been encoded in advance in the representation of flow. We demonstrate that the middle and upper layers encode a few short-term future decisions to some extent when planning is successful. Overall, our research analyzes the look-ahead planning mechanisms of LLMs, facilitating future research on LLMs performing planning tasks.
Abstract:Large language models (LLMs) have achieved remarkable success but still tend to generate factually erroneous responses, a phenomenon known as hallucination. A recent trend is to use preference learning to fine-tune models to align with factuality. However, existing work primarily evaluates fine-tuned models on in-domain (ID) datasets and the factuality on out-of-domain (OOD) datasets remains underexplored. In this paper, we conduct a comprehensive evaluation of the factuality of different models tuned by various preference learning algorithms and demonstrate that their performance on OOD datasets either increases minimally or decreases. Subsequently, we reveal that the main cause of model's failure to uphold factuality under a distribution shift is \textbf{under-alignment}, rather than \textbf{over-alignment}, by analyzing the token distribution shift of the models before and after tuning. Finally, we propose \textbf{APEFT} (\textbf{A}tomic \textbf{P}reference \textbf{E}nhanced \textbf{F}actuality \textbf{T}uning), a framework that enhances model's awareness of factuality at the granularity of individual facts. Extensive experiments demonstrate that APEFT improves model performance by an average of $\boldsymbol{3.45\%}$ on both ID and OOD datasets, which is highly effective.
Abstract:Large language models (LLMs) inevitably memorize sensitive, copyrighted, and harmful knowledge from the training corpus; therefore, it is crucial to erase this knowledge from the models. Machine unlearning is a promising solution for efficiently removing specific knowledge by post hoc modifying models. In this paper, we propose a Real-World Knowledge Unlearning benchmark (RWKU) for LLM unlearning. RWKU is designed based on the following three key factors: (1) For the task setting, we consider a more practical and challenging unlearning setting, where neither the forget corpus nor the retain corpus is accessible. (2) For the knowledge source, we choose 200 real-world famous people as the unlearning targets and show that such popular knowledge is widely present in various LLMs. (3) For the evaluation framework, we design the forget set and the retain set to evaluate the model's capabilities across various real-world applications. Regarding the forget set, we provide four four membership inference attack (MIA) methods and nine kinds of adversarial attack probes to rigorously test unlearning efficacy. Regarding the retain set, we assess locality and utility in terms of neighbor perturbation, general ability, reasoning ability, truthfulness, factuality, and fluency. We conduct extensive experiments across two unlearning scenarios, two models and six baseline methods and obtain some meaningful findings. We release our benchmark and code publicly at http://rwku-bench.github.io for future work.
Abstract:With the development of deep learning, natural language processing technology has effectively improved the efficiency of various aspects of the traditional judicial industry. However, most current efforts focus solely on individual judicial stage, overlooking cross-stage collaboration. As the autonomous agents powered by large language models are becoming increasingly smart and able to make complex decisions in real-world settings, offering new insights for judicial intelligence. In this paper, (1) we introduce SimuCourt, a judicial benchmark that encompasses 420 judgment documents from real-world, spanning the three most common types of judicial cases, and a novel task Judicial Decision-Making to evaluate the judicial analysis and decision-making power of agents. To support this task, we construct a large-scale judicial knowledge base, JudicialKB, with multiple legal knowledge. (2) we propose a novel multi-agent framework, AgentsCourt. Our framework follows the real-world classic court trial process, consisting of court debate simulation, legal information retrieval and judgement refinement to simulate the decision-making of judge. (3) we perform extensive experiments, the results demonstrate that, our framework outperforms the existing advanced methods in various aspects, especially in generating legal grounds, where our model achieves significant improvements of 8.6% and 9.1% F1 score in the first and second instance settings, respectively.