Abstract:Previous studies primarily utilize MLP neurons as units of analysis for understanding the mechanisms of factual knowledge in Language Models (LMs); however, neurons suffer from polysemanticity, leading to limited knowledge expression and poor interpretability. In this paper, we first conduct preliminary experiments to validate that Sparse Autoencoders (SAE) can effectively decompose neurons into features, which serve as alternative analytical units. With this established, our core findings reveal three key advantages of features over neurons: (1) Features exhibit stronger influence on knowledge expression and superior interpretability. (2) Features demonstrate enhanced monosemanticity, showing distinct activation patterns between related and unrelated facts. (3) Features achieve better privacy protection than neurons, demonstrated through our proposed FeatureEdit method, which significantly outperforms existing neuron-based approaches in erasing privacy-sensitive information from LMs.Code and dataset will be available.
Abstract:Continual learning (CL) is essential for Large Language Models (LLMs) to adapt to evolving real-world demands, yet they are susceptible to catastrophic forgetting (CF). While traditional CF solutions rely on expensive data rehearsal, recent rehearsal-free methods employ model-based and regularization-based strategies to address this issue. However, these approaches often neglect the model's plasticity, which is crucial to achieving optimal performance on newly learned tasks. Consequently, a key challenge in CL is striking a balance between preserving plasticity and mitigating CF. To tackle this challenge, we propose the $\textbf{D}$ecomposed $\textbf{A}$ttention-based $\textbf{T}$ask $\textbf{A}$daptation (DATA), which explicitly decouples and learns both task-specific and task-shared knowledge using high-rank and low-rank task adapters (e.g., LoRAs). For new tasks, DATA dynamically adjusts the weights of adapters of different ranks based on their relevance and distinction from previous tasks, allowing the model to acquire new task-specific skills while effectively retaining previously learned knowledge. Specifically, we implement a decomposed component weighting strategy comprising learnable components that collectively generate attention-based weights, allowing the model to integrate and utilize diverse knowledge from each DATA. Extensive experiments on three widely used benchmarks demonstrate that our proposed method achieves state-of-the-art performance. Notably, our approach significantly enhances model plasticity and mitigates CF by extending learnable components and employing stochastic restoration during training iterations.
Abstract:The efficient processing of long context poses a serious challenge for large language models (LLMs). Recently, retrieval-augmented generation (RAG) has emerged as a promising strategy for this problem, as it enables LLMs to make selective use of the long context for efficient computation. However, existing RAG approaches lag behind other long-context processing methods due to inherent limitations on inaccurate retrieval and fragmented contexts. To address these challenges, we introduce RetroLM, a novel RAG framework for long-context processing. Unlike traditional methods, RetroLM employs KV-level retrieval augmentation, where it partitions the LLM's KV cache into contiguous pages and retrieves the most crucial ones for efficient computation. This approach enhances robustness to retrieval inaccuracy, facilitates effective utilization of fragmented contexts, and saves the cost from repeated computation. Building on this framework, we further develop a specialized retriever for precise retrieval of critical pages and conduct unsupervised post-training to optimize the model's ability to leverage retrieved information. We conduct comprehensive evaluations with a variety of benchmarks, including LongBench, InfiniteBench, and RULER, where RetroLM significantly outperforms existing long-context LLMs and efficient long-context processing methods, particularly in tasks requiring intensive reasoning or extremely long-context comprehension.
Abstract:In this paper, we explore a principal way to enhance the quality of widely pre-existing coarse masks, enabling them to serve as reliable training data for segmentation models to reduce the annotation cost. In contrast to prior refinement techniques that are tailored to specific models or tasks in a close-world manner, we propose SAMRefiner, a universal and efficient approach by adapting SAM to the mask refinement task. The core technique of our model is the noise-tolerant prompting scheme. Specifically, we introduce a multi-prompt excavation strategy to mine diverse input prompts for SAM (i.e., distance-guided points, context-aware elastic bounding boxes, and Gaussian-style masks) from initial coarse masks. These prompts can collaborate with each other to mitigate the effect of defects in coarse masks. In particular, considering the difficulty of SAM to handle the multi-object case in semantic segmentation, we introduce a split-then-merge (STM) pipeline. Additionally, we extend our method to SAMRefiner++ by introducing an additional IoU adaption step to further boost the performance of the generic SAMRefiner on the target dataset. This step is self-boosted and requires no additional annotation. The proposed framework is versatile and can flexibly cooperate with existing segmentation methods. We evaluate our mask framework on a wide range of benchmarks under different settings, demonstrating better accuracy and efficiency. SAMRefiner holds significant potential to expedite the evolution of refinement tools. Our code is available at https://github.com/linyq2117/SAMRefiner.
Abstract:How to interact with LLMs through \emph{instructions} has been widely studied by researchers. However, previous studies have treated the emergence of instructions and the training of LLMs on task data as separate processes, overlooking the inherent unity between the two. This paper proposes a neural network framework, VaiBot, that integrates VAE and VIB, designed to uniformly model, learn, and infer both deduction and induction tasks under LLMs. Through experiments, we demonstrate that VaiBot performs on par with existing baseline methods in terms of deductive capabilities while significantly surpassing them in inductive capabilities. We also find that VaiBot can scale up using general instruction-following data and exhibits excellent one-shot induction abilities. We finally synergistically integrate the deductive and inductive processes of VaiBot. Through T-SNE dimensionality reduction, we observe that its inductive-deductive process significantly improves the distribution of training parameters, enabling it to outperform baseline methods in inductive reasoning tasks. The code and data for this paper can be found at https://anonymous.4open.science/r/VaiBot-021F.
Abstract:Despite the significant progress made by existing retrieval augmented language models (RALMs) in providing trustworthy responses and grounding in reliable sources, they often overlook effective alignment with human preferences. In the alignment process, reward models (RMs) act as a crucial proxy for human values to guide optimization. However, it remains unclear how to evaluate and select a reliable RM for preference alignment in RALMs. To this end, we propose RAG-RewardBench, the first benchmark for evaluating RMs in RAG settings. First, we design four crucial and challenging RAG-specific scenarios to assess RMs, including multi-hop reasoning, fine-grained citation, appropriate abstain, and conflict robustness. Then, we incorporate 18 RAG subsets, six retrievers, and 24 RALMs to increase the diversity of data sources. Finally, we adopt an LLM-as-a-judge approach to improve preference annotation efficiency and effectiveness, exhibiting a strong correlation with human annotations. Based on the RAG-RewardBench, we conduct a comprehensive evaluation of 45 RMs and uncover their limitations in RAG scenarios. Additionally, we also reveal that existing trained RALMs show almost no improvement in preference alignment, highlighting the need for a shift towards preference-aligned training.We release our benchmark and code publicly at https://huggingface.co/datasets/jinzhuoran/RAG-RewardBench/ for future work.
Abstract:Transformer models have revolutionized AI, enabling applications like content generation and sentiment analysis. However, their use in Machine Learning as a Service (MLaaS) raises significant privacy concerns, as centralized servers process sensitive user data. Private Transformer Inference (PTI) addresses these issues using cryptographic techniques such as Secure Multi-Party Computation (MPC) and Homomorphic Encryption (HE), enabling secure model inference without exposing inputs or models. This paper reviews recent advancements in PTI, analyzing state-of-the-art solutions, their challenges, and potential improvements. We also propose evaluation guidelines to assess resource efficiency and privacy guarantees, aiming to bridge the gap between high-performance inference and data privacy.
Abstract:Language Agent could be endowed with different mechanisms for autonomous task accomplishment. Current agents typically rely on fixed mechanisms or a set of mechanisms activated in a predefined order, limiting their adaptation to varied potential task solution structures. To this end, this paper proposes \textbf{A}daptive \textbf{L}anguage \textbf{A}gent \textbf{M}echanism \textbf{A}ctivation Learning with Self-Exploration (\textbf{ALAMA}), which focuses on optimizing mechanism activation adaptability without reliance on expert models. Initially, it builds a harmonized agent framework (\textbf{UniAct}) to \textbf{Uni}fy different mechanisms via \textbf{Act}ions. Then it leverages a training-efficient optimization method based on self-exploration to enable the UniAct to adaptively activate the appropriate mechanisms according to the potential characteristics of the task. Experimental results demonstrate significant improvements in downstream agent tasks, affirming the effectiveness of our approach in facilitating more dynamic and context-sensitive mechanism activation.
Abstract:Large language models (LLMs) have learned vast amounts of factual knowledge through self-supervised pre-training on large-scale corpora. Meanwhile, LLMs have also demonstrated excellent multilingual capabilities, which can express the learned knowledge in multiple languages. However, the knowledge storage mechanism in LLMs still remains mysterious. Some researchers attempt to demystify the factual knowledge in LLMs from the perspective of knowledge neurons, and subsequently discover language-agnostic knowledge neurons that store factual knowledge in a form that transcends language barriers. However, the preliminary finding suffers from two limitations: 1) High Uncertainty in Localization Results. Existing study only uses a prompt-based probe to localize knowledge neurons for each fact, while LLMs cannot provide consistent answers for semantically equivalent queries. Thus, it leads to inaccurate localization results with high uncertainty. 2) Lack of Analysis in More Languages. The study only analyzes language-agnostic knowledge neurons on English and Chinese data, without exploring more language families and languages. Naturally, it limits the generalizability of the findings. To address aforementioned problems, we first construct a new benchmark called Rephrased Multilingual LAMA (RML-LAMA), which contains high-quality cloze-style multilingual parallel queries for each fact. Then, we propose a novel method named Multilingual Integrated Gradients with Uncertainty Estimation (MATRICE), which quantifies the uncertainty across queries and languages during knowledge localization. Extensive experiments show that our method can accurately localize language-agnostic knowledge neurons. We also further investigate the role of language-agnostic knowledge neurons in cross-lingual knowledge editing, knowledge enhancement and new knowledge injection.
Abstract:In the rapidly evolving landscape of the Metaverse, enhanced by blockchain technology, the efficient processing of data has emerged as a critical challenge, especially in wireless communication systems. Addressing this need, our paper introduces the innovative concept of data processing efficiency (DPE), aiming to maximize processed bits per unit of resource consumption in blockchain-empowered Metaverse environments. To achieve this, we propose the DPE-Aware User Association and Resource Allocation (DAUR) algorithm, a tailored solution for these complex systems. The DAUR algorithm transforms the challenging task of optimizing the sum of DPE ratios into a solvable convex optimization problem. It uniquely alternates the optimization of key variables like user association, work offloading ratios, task-specific computing resource distribution, bandwidth allocation, user power usage ratios, and server computing resource allocation ratios. Our extensive numerical results demonstrate the DAUR algorithm's effectiveness in DPE.