Abstract:Embodied multi-agent systems (EMAS) have attracted growing attention for their potential to address complex, real-world challenges in areas such as logistics and robotics. Recent advances in foundation models pave the way for generative agents capable of richer communication and adaptive problem-solving. This survey provides a systematic examination of how EMAS can benefit from these generative capabilities. We propose a taxonomy that categorizes EMAS by system architectures and embodiment modalities, emphasizing how collaboration spans both physical and virtual contexts. Central building blocks, perception, planning, communication, and feedback, are then analyzed to illustrate how generative techniques bolster system robustness and flexibility. Through concrete examples, we demonstrate the transformative effects of integrating foundation models into embodied, multi-agent frameworks. Finally, we discuss challenges and future directions, underlining the significant promise of EMAS to reshape the landscape of AI-driven collaboration.
Abstract:Most recommendation systems typically follow a product-based paradigm utilizing user-product interactions to identify the most engaging items for users. However, this product-based paradigm has notable drawbacks for Xianyu~\footnote{Xianyu is China's largest online C2C e-commerce platform where a large portion of the product are post by individual sellers}. Most of the product on Xianyu posted from individual sellers often have limited stock available for distribution, and once the product is sold, it's no longer available for distribution. This result in most items distributed product on Xianyu having relatively few interactions, affecting the effectiveness of traditional recommendation depending on accumulating user-item interactions. To address these issues, we introduce \textbf{IU4Rec}, an \textbf{I}nterest \textbf{U}nit-based two-stage \textbf{Rec}ommendation system framework. We first group products into clusters based on attributes such as category, image, and semantics. These IUs are then integrated into the Recommendation system, delivering both product and technological innovations. IU4Rec begins by grouping products into clusters based on attributes such as category, image, and semantics, forming Interest Units (IUs). Then we redesign the recommendation process into two stages. In the first stage, the focus is on recommend these Interest Units, capturing broad-level interests. In the second stage, it guides users to find the best option among similar products within the selected Interest Unit. User-IU interactions are incorporated into our ranking models, offering the advantage of more persistent IU behaviors compared to item-specific interactions. Experimental results on the production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed IU-centric recommendation approach.
Abstract:Optimal transport (OT) is a critical problem in optimization and machine learning, where accuracy and efficiency are paramount. Although entropic regularization and the Sinkhorn algorithm improve scalability, they frequently encounter numerical instability and slow convergence, especially when the regularization parameter is small. In this work, we introduce Proximal Iterations with Sparse Newton and Sinkhorn methods (PINS) to efficiently compute highly accurate solutions for large-scale OT problems. A reduced computational complexity through overall sparsity and global convergence are guaranteed by rigorous theoretical analysis. Our approach offers three key advantages: it achieves accuracy comparable to exact solutions, progressively accelerates each iteration for greater efficiency, and enhances robustness by reducing sensitivity to regularization parameters. Extensive experiments confirm these advantages, demonstrating superior performance compared to related methods.
Abstract:Convergent Cross Mapping (CCM) is a powerful method for detecting causality in coupled nonlinear dynamical systems, providing a model-free approach to capture dynamic causal interactions. Partial Cross Mapping (PCM) was introduced as an extension of CCM to address indirect causality in three-variable systems by comparing cross-mapping quality between direct cause-effect mapping and indirect mapping through an intermediate conditioning variable. However, PCM remains limited to univariate delay embeddings in its cross-mapping processes. In this work, we extend PCM to the multivariate setting, introducing multiPCM, which leverages multivariate embeddings to more effectively distinguish indirect causal relationships. We further propose a multivariate cross-mapping framework (MXMap) for causal discovery in dynamical systems. This two-phase framework combines (1) pairwise CCM tests to establish an initial causal graph and (2) multiPCM to refine the graph by pruning indirect causal connections. Through experiments on simulated data and the ERA5 Reanalysis weather dataset, we demonstrate the effectiveness of MXMap. Additionally, MXMap is compared against several baseline methods, showing advantages in accuracy and causal graph refinement.
Abstract:Large language models (LLMs), or foundation models (FMs), are pretrained transformers that coherently complete sentences auto-regressively. In this paper, we show that LLMs can control simplified space systems after some additional training, called fine-tuning. We look at relatively small language models, ranging between 7 and 13 billion parameters. We focus on four problems: a three-dimensional spring toy problem, low-thrust orbit transfer, low-thrust cislunar control, and powered descent guidance. The fine-tuned LLMs are capable of controlling systems by generating sufficiently accurate outputs that are multi-dimensional vectors with up to 10 significant digits. We show that for several problems the amount of data required to perform fine-tuning is smaller than what is generally required of traditional deep neural networks (DNNs), and that fine-tuned LLMs are good at generalizing outside of the training dataset. Further, the same LLM can be fine-tuned with data from different problems, with only minor performance degradation with respect to LLMs trained for a single application. This work is intended as a first step towards the development of a general space systems controller.
Abstract:Online reviews allow consumers to provide detailed feedback on various aspects of items. Existing methods utilize these aspects to model users' fine-grained preferences for specific item features through graph neural networks. We argue that the performance of items on different aspects is important for making precise recommendations, which has not been taken into account by existing approaches, due to lack of data. In this paper, we propose an aspect performance-aware hypergraph neural network (APH) for the review-based recommendation, which learns the performance of items from the conflicting sentiment polarity of user reviews. Specifically, APH comprehensively models the relationships among users, items, aspects, and sentiment polarity by systematically constructing an aspect hypergraph based on user reviews. In addition, APH aggregates aspects representing users and items by employing an aspect performance-aware hypergraph aggregation method. It aggregates the sentiment polarities from multiple users by jointly considering user preferences and the semantics of their sentiments, determining the weights of sentiment polarities to infer the performance of items on various aspects. Such performances are then used as weights to aggregate neighboring aspects. Experiments on six real-world datasets demonstrate that APH improves MSE, Precision@5, and Recall@5 by an average of 2.30%, 4.89%, and 1.60% over the best baseline. The source code and data are available at https://github.com/dianziliu/APH.
Abstract:Decision Transformer (DT), a trajectory modeling method, has shown competitive performance compared to traditional offline reinforcement learning (RL) approaches on various classic control tasks. However, it struggles to learn optimal policies from suboptimal, reward-labeled trajectories. In this study, we explore the use of conditional generative modeling to facilitate trajectory stitching given its high-quality data generation ability. Additionally, recent advancements in Recurrent Neural Networks (RNNs) have shown their linear complexity and competitive sequence modeling performance over Transformers. We leverage the Test-Time Training (TTT) layer, an RNN that updates hidden states during testing, to model trajectories in the form of DT. We introduce a unified framework, called Diffusion-Refined Decision TTT (DRDT3), to achieve performance beyond DT models. Specifically, we propose the Decision TTT (DT3) module, which harnesses the sequence modeling strengths of both self-attention and the TTT layer to capture recent contextual information and make coarse action predictions. We further integrate DT3 with the diffusion model using a unified optimization objective. With experiments on multiple tasks of Gym and AntMaze in the D4RL benchmark, our DT3 model without diffusion refinement demonstrates improved performance over standard DT, while DRDT3 further achieves superior results compared to state-of-the-art conventional offline RL and DT-based methods.
Abstract:With the continuous improvement of people's living standards and fast-paced working conditions, pre-made dishes are becoming increasingly popular among families and restaurants due to their advantages of time-saving, convenience, variety, cost-effectiveness, standard quality, etc. Object detection is a key technology for selecting ingredients and evaluating the quality of dishes in the pre-made dishes industry. To date, many object detection approaches have been proposed. However, accurate object detection of pre-made dishes is extremely difficult because of overlapping occlusion of ingredients, similarity of ingredients, and insufficient light in the processing environment. As a result, the recognition scene is relatively complex and thus leads to poor object detection by a single model. To address this issue, this paper proposes a Differential Evolution Integrated Hybrid Deep Learning (DEIHDL) model. The main idea of DEIHDL is three-fold: 1) three YOLO-based and transformer-based base models are developed respectively to increase diversity for detecting objects of pre-made dishes, 2) the three base models are integrated by differential evolution optimized self-adjusting weights, and 3) weighted boxes fusion strategy is employed to score the confidence of the three base models during the integration. As such, DEIHDL possesses the multi-performance originating from the three base models to achieve accurate object detection in complex pre-made dish scenes. Extensive experiments on real datasets demonstrate that the proposed DEIHDL model significantly outperforms the base models in detecting objects of pre-made dishes.
Abstract:The application of vision-based multi-view environmental perception system has been increasingly recognized in autonomous driving technology, especially the BEV-based models. Current state-of-the-art solutions primarily encode image features from each camera view into the BEV space through explicit or implicit depth prediction. However, these methods often focus on improving the accuracy of projecting 2D features into corresponding depth regions, while overlooking the highly structured information of real-world objects and the varying height distributions of objects across different scenes. In this work, we propose HV-BEV, a novel approach that decouples feature sampling in the BEV grid queries paradigm into horizontal feature aggregation and vertical adaptive height-aware reference point sampling, aiming to improve both the aggregation of objects' complete information and generalization to diverse road environments. Specifically, we construct a learnable graph structure in the horizontal plane aligned with the ground for 3D reference points, reinforcing the association of the same instance across different BEV grids, especially when the instance spans multiple image views around the vehicle. Additionally, instead of relying on uniform sampling within a fixed height range, we introduce a height-aware module that incorporates historical information, enabling the reference points to adaptively focus on the varying heights at which objects appear in different scenes. Extensive experiments validate the effectiveness of our proposed method, demonstrating its superior performance over the baseline across the nuScenes dataset. Moreover, our best-performing model achieves a remarkable 50.5% mAP and 59.8% NDS on the nuScenes testing set.
Abstract:Large Automatic Speech Recognition (ASR) models demand a vast number of parameters, copious amounts of data, and significant computational resources during the training process. However, such models can merely be deployed on high-compute cloud platforms and are only capable of performing speech recognition tasks. This leads to high costs and restricted capabilities. In this report, we initially propose the elastic mixture of the expert (eMoE) model. This model can be trained just once and then be elastically scaled in accordance with deployment requirements. Secondly, we devise an unsupervised data creation and validation procedure and gather millions of hours of audio data from diverse domains for training. Using these two techniques, our system achieves elastic deployment capabilities while reducing the Character Error Rate (CER) on the SpeechIO testsets from 4.98\% to 2.45\%. Thirdly, our model is not only competent in Mandarin speech recognition but also proficient in multilingual, multi-dialect, emotion, gender, and sound event perception. We refer to this as Automatic Speech Perception (ASP), and the perception results are presented in the experimental section.