Abstract:The rise of Large Reasoning Models (LRMs) signifies a paradigm shift toward advanced computational reasoning. Yet, this progress disrupts traditional agent frameworks, traditionally anchored by execution-oriented Large Language Models (LLMs). To explore this transformation, we propose the LaRMA framework, encompassing nine tasks across Tool Usage, Plan Design, and Problem Solving, assessed with three top LLMs (e.g., Claude3.5-sonnet) and five leading LRMs (e.g., DeepSeek-R1). Our findings address four research questions: LRMs surpass LLMs in reasoning-intensive tasks like Plan Design, leveraging iterative reflection for superior outcomes; LLMs excel in execution-driven tasks such as Tool Usage, prioritizing efficiency; hybrid LLM-LRM configurations, pairing LLMs as actors with LRMs as reflectors, optimize agent performance by blending execution speed with reasoning depth; and LRMs' enhanced reasoning incurs higher computational costs, prolonged processing, and behavioral challenges, including overthinking and fact-ignoring tendencies. This study fosters deeper inquiry into LRMs' balance of deep thinking and overthinking, laying a critical foundation for future agent design advancements.
Abstract:The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.
Abstract:Multimodal retrieval-augmented generation (RAG) enhances the visual reasoning capability of vision-language models (VLMs) by dynamically accessing information from external knowledge bases. In this work, we introduce \textit{Poisoned-MRAG}, the first knowledge poisoning attack on multimodal RAG systems. Poisoned-MRAG injects a few carefully crafted image-text pairs into the multimodal knowledge database, manipulating VLMs to generate the attacker-desired response to a target query. Specifically, we formalize the attack as an optimization problem and propose two cross-modal attack strategies, dirty-label and clean-label, tailored to the attacker's knowledge and goals. Our extensive experiments across multiple knowledge databases and VLMs show that Poisoned-MRAG outperforms existing methods, achieving up to 98\% attack success rate with just five malicious image-text pairs injected into the InfoSeek database (481,782 pairs). Additionally, We evaluate 4 different defense strategies, including paraphrasing, duplicate removal, structure-driven mitigation, and purification, demonstrating their limited effectiveness and trade-offs against Poisoned-MRAG. Our results highlight the effectiveness and scalability of Poisoned-MRAG, underscoring its potential as a significant threat to multimodal RAG systems.
Abstract:Text-to-Image models may generate harmful content, such as pornographic images, particularly when unsafe prompts are submitted. To address this issue, safety filters are often added on top of text-to-image models, or the models themselves are aligned to reduce harmful outputs. However, these defenses remain vulnerable when an attacker strategically designs adversarial prompts to bypass these safety guardrails. In this work, we propose PromptTune, a method to jailbreak text-to-image models with safety guardrails using a fine-tuned large language model. Unlike other query-based jailbreak attacks that require repeated queries to the target model, our attack generates adversarial prompts efficiently after fine-tuning our AttackLLM. We evaluate our method on three datasets of unsafe prompts and against five safety guardrails. Our results demonstrate that our approach effectively bypasses safety guardrails, outperforms existing no-box attacks, and also facilitates other query-based attacks.
Abstract:Text-to-image models can generate harmful images when presented with unsafe prompts, posing significant safety and societal risks. Alignment methods aim to modify these models to ensure they generate only non-harmful images, even when exposed to unsafe prompts. A typical text-to-image model comprises two main components: 1) a text encoder and 2) a diffusion module. Existing alignment methods mainly focus on modifying the diffusion module to prevent harmful image generation. However, this often significantly impacts the model's behavior for safe prompts, causing substantial quality degradation of generated images. In this work, we propose SafeText, a novel alignment method that fine-tunes the text encoder rather than the diffusion module. By adjusting the text encoder, SafeText significantly alters the embedding vectors for unsafe prompts, while minimally affecting those for safe prompts. As a result, the diffusion module generates non-harmful images for unsafe prompts while preserving the quality of images for safe prompts. We evaluate SafeText on multiple datasets of safe and unsafe prompts, including those generated through jailbreak attacks. Our results show that SafeText effectively prevents harmful image generation with minor impact on the images for safe prompts, and SafeText outperforms six existing alignment methods. We will publish our code and data after paper acceptance.
Abstract:Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data. With the increasing deployment of machine learning models in distributed computing environments, including cloud, edge, and federated learning settings, each paradigm introduces distinct vulnerabilities and challenges. Without a unified perspective on MEAs across these distributed environments, organizations risk fragmented defenses, inadequate risk assessments, and substantial economic and privacy losses. This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements. We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services. By synthesizing recent advances in MEAs research and discussing the limitations of current evaluation practices, this survey provides essential insights for developing robust and adaptive defense strategies. Our comprehensive approach highlights the importance of integrating protective measures across the entire distributed computing landscape to ensure the secure deployment of machine learning models.
Abstract:Federated reinforcement learning (FRL) allows agents to jointly learn a global decision-making policy under the guidance of a central server. While FRL has advantages, its decentralized design makes it prone to poisoning attacks. To mitigate this, Byzantine-robust aggregation techniques tailored for FRL have been introduced. Yet, in our work, we reveal that these current Byzantine-robust techniques are not immune to our newly introduced Normalized attack. Distinct from previous attacks that targeted enlarging the distance of policy updates before and after an attack, our Normalized attack emphasizes on maximizing the angle of deviation between these updates. To counter these threats, we develop an ensemble FRL approach that is provably secure against both known and our newly proposed attacks. Our ensemble method involves training multiple global policies, where each is learnt by a group of agents using any foundational aggregation rule. These well-trained global policies then individually predict the action for a specific test state. The ultimate action is chosen based on a majority vote for discrete action systems or the geometric median for continuous ones. Our experimental results across different settings show that the Normalized attack can greatly disrupt non-ensemble Byzantine-robust methods, and our ensemble approach offers substantial resistance against poisoning attacks.
Abstract:In a prompt injection attack, an attacker injects a prompt into the original one, aiming to make the LLM follow the injected prompt and perform a task chosen by the attacker. Existing prompt injection attacks primarily focus on how to blend the injected prompt into the original prompt without altering the LLM itself. Our experiments show that these attacks achieve some success, but there is still significant room for improvement. In this work, we show that an attacker can boost the success of prompt injection attacks by poisoning the LLM's alignment process. Specifically, we propose PoisonedAlign, a method to strategically create poisoned alignment samples. When even a small fraction of the alignment data is poisoned using our method, the aligned LLM becomes more vulnerable to prompt injection while maintaining its foundational capabilities. The code is available at https://github.com/Sadcardation/PoisonedAlign
Abstract:Visual hallucination (VH) occurs when a multimodal large language model (MLLM) generates responses with incorrect visual details for prompts. Existing methods for generating VH test cases primarily rely on human annotations, typically in the form of triples: (image, question, answer). In this paper, we introduce VHExpansion, the first automated method for expanding VH test cases for MLLMs. Given an initial VH test case, VHExpansion automatically expands it by perturbing the question and answer through negation as well as modifying the image using both common and adversarial perturbations. Additionally, we propose a new evaluation metric, symmetric accuracy, which measures the proportion of correctly answered VH test-case pairs. Each pair consists of a test case and its negated counterpart. Our theoretical analysis shows that symmetric accuracy is an unbiased evaluation metric that remains unaffected by the imbalance of VH testing cases with varying answers when an MLLM is randomly guessing the answers, whereas traditional accuracy is prone to such imbalance. We apply VHExpansion to expand three VH datasets annotated manually and use these expanded datasets to benchmark seven MLLMs. Our evaluation shows that VHExpansion effectively identifies more VH test cases. Moreover, symmetric accuracy, being unbiased, leads to different conclusions about the vulnerability of MLLMs to VH compared to traditional accuracy metric. Finally, we show that fine-tuning MLLMs on the expanded VH dataset generated by VHExpansion mitigates VH more effectively than fine-tuning on the original, manually annotated dataset. Our code is available at: https://github.com/lycheeefish/VHExpansion.
Abstract:String processing, which mainly involves the analysis and manipulation of strings, is a fundamental component of modern computing. Despite the significant advancements of large language models (LLMs) in various natural language processing (NLP) tasks, their capability in string processing remains underexplored and underdeveloped. To bridge this gap, we present a comprehensive study of LLMs' string processing capability. In particular, we first propose StringLLM, a method to construct datasets for benchmarking string processing capability of LLMs. We use StringLLM to build a series of datasets, referred to as StringBench. It encompasses a wide range of string processing tasks, allowing us to systematically evaluate LLMs' performance in this area. Our evaluations indicate that LLMs struggle with accurately processing strings compared to humans. To uncover the underlying reasons for this limitation, we conduct an in-depth analysis and subsequently propose an effective approach that significantly enhances LLMs' string processing capability via fine-tuning. This work provides a foundation for future research to understand LLMs' string processing capability. Our code and data are available at https://github.com/wxl-lxw/StringLLM.