Abstract:While text-to-image models offer numerous benefits, they also pose significant societal risks. Detecting AI-generated images is crucial for mitigating these risks. Detection methods can be broadly categorized into passive and watermark-based approaches: passive detectors rely on artifacts present in AI-generated images, whereas watermark-based detectors proactively embed watermarks into such images. A key question is which type of detector performs better in terms of effectiveness, robustness, and efficiency. However, the current literature lacks a comprehensive understanding of this issue. In this work, we aim to bridge that gap by developing ImageDetectBench, the first comprehensive benchmark to compare the effectiveness, robustness, and efficiency of passive and watermark-based detectors. Our benchmark includes four datasets, each containing a mix of AI-generated and non-AI-generated images. We evaluate five passive detectors and four watermark-based detectors against eight types of common perturbations and three types of adversarial perturbations. Our benchmark results reveal several interesting findings. For instance, watermark-based detectors consistently outperform passive detectors, both in the presence and absence of perturbations. Based on these insights, we provide recommendations for detecting AI-generated images, e.g., when both types of detectors are applicable, watermark-based detectors should be the preferred choice.
Abstract:Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns. Watermarking AI-generated content is a key technology to address these concerns and has been widely deployed in industry. However, watermarking is vulnerable to removal attacks and forgery attacks. In this work, we propose the first image watermarks with certified robustness guarantees against removal and forgery attacks. Our method leverages randomized smoothing, a popular technique to build certifiably robust classifiers and regression models. Our major technical contributions include extending randomized smoothing to watermarking by considering its unique characteristics, deriving the certified robustness guarantees, and designing algorithms to estimate them. Moreover, we extensively evaluate our image watermarks in terms of both certified and empirical robustness. Our code is available at \url{https://github.com/zhengyuan-jiang/Watermark-Library}.
Abstract:The increasing realism of synthetic speech, driven by advancements in text-to-speech models, raises ethical concerns regarding impersonation and disinformation. Audio watermarking offers a promising solution via embedding human-imperceptible watermarks into AI-generated audios. However, the robustness of audio watermarking against common/adversarial perturbations remains understudied. We present AudioMarkBench, the first systematic benchmark for evaluating the robustness of audio watermarking against watermark removal and watermark forgery. AudioMarkBench includes a new dataset created from Common-Voice across languages, biological sexes, and ages, 3 state-of-the-art watermarking methods, and 15 types of perturbations. We benchmark the robustness of these methods against the perturbations in no-box, black-box, and white-box settings. Our findings highlight the vulnerabilities of current watermarking techniques and emphasize the need for more robust and fair audio watermarking solutions. Our dataset and code are publicly available at \url{https://github.com/moyangkuo/AudioMarkBench}.
Abstract:Watermark has been widely deployed by industry to detect AI-generated images. A recent watermarking framework called \emph{Stable Signature} (proposed by Meta) roots watermark into the parameters of a diffusion model's decoder such that its generated images are inherently watermarked. Stable Signature makes it possible to watermark images generated by \emph{open-source} diffusion models and was claimed to be robust against removal attacks. In this work, we propose a new attack to remove the watermark from a diffusion model by fine-tuning it. Our results show that our attack can effectively remove the watermark from a diffusion model such that its generated images are non-watermarked, while maintaining the visual quality of the generated images. Our results highlight that Stable Signature is not as stable as previously thought.
Abstract:Several companies--such as Google, Microsoft, and OpenAI--have deployed techniques to watermark AI-generated content to enable proactive detection. However, existing literature mainly focuses on user-agnostic detection. Attribution aims to further trace back the user of a generative-AI service who generated a given content detected as AI-generated. Despite its growing importance, attribution is largely unexplored. In this work, we aim to bridge this gap by providing the first systematic study on watermark-based, user-aware detection and attribution of AI-generated content. Specifically, we theoretically study the detection and attribution performance via rigorous probabilistic analysis. Moreover, we develop an efficient algorithm to select watermarks for the users to enhance attribution performance. Both our theoretical and empirical results show that watermark-based detection and attribution inherit the accuracy and (non-)robustness properties of the watermarking method.
Abstract:Watermark has been widely deployed by industry to detect AI-generated images. The robustness of such watermark-based detector against evasion attacks in the white-box and black-box settings is well understood in the literature. However, the robustness in the no-box setting is much less understood. In particular, multiple studies claimed that image watermark is robust in such setting. In this work, we propose a new transfer evasion attack to image watermark in the no-box setting. Our transfer attack adds a perturbation to a watermarked image to evade multiple surrogate watermarking models trained by the attacker itself, and the perturbed watermarked image also evades the target watermarking model. Our major contribution is to show that, both theoretically and empirically, watermark-based AI-generated image detector is not robust to evasion attacks even if the attacker does not have access to the watermarking model nor the detection API.