Abstract:Visual hallucination (VH) occurs when a multimodal large language model (MLLM) generates responses with incorrect visual details for prompts. Existing methods for generating VH test cases primarily rely on human annotations, typically in the form of triples: (image, question, answer). In this paper, we introduce VHExpansion, the first automated method for expanding VH test cases for MLLMs. Given an initial VH test case, VHExpansion automatically expands it by perturbing the question and answer through negation as well as modifying the image using both common and adversarial perturbations. Additionally, we propose a new evaluation metric, symmetric accuracy, which measures the proportion of correctly answered VH test-case pairs. Each pair consists of a test case and its negated counterpart. Our theoretical analysis shows that symmetric accuracy is an unbiased evaluation metric that remains unaffected by the imbalance of VH testing cases with varying answers when an MLLM is randomly guessing the answers, whereas traditional accuracy is prone to such imbalance. We apply VHExpansion to expand three VH datasets annotated manually and use these expanded datasets to benchmark seven MLLMs. Our evaluation shows that VHExpansion effectively identifies more VH test cases. Moreover, symmetric accuracy, being unbiased, leads to different conclusions about the vulnerability of MLLMs to VH compared to traditional accuracy metric. Finally, we show that fine-tuning MLLMs on the expanded VH dataset generated by VHExpansion mitigates VH more effectively than fine-tuning on the original, manually annotated dataset. Our code is available at: https://github.com/lycheeefish/VHExpansion.
Abstract:Multimodal large language models (MLLMs) have become the cornerstone of today's generative AI ecosystem, sparking intense competition among tech giants and startups. In particular, an MLLM generates a text response given a prompt consisting of an image and a question. While state-of-the-art MLLMs use safety filters and alignment techniques to refuse unsafe prompts, in this work, we introduce MLLM-Refusal, the first method that induces refusals for safe prompts. In particular, our MLLM-Refusal optimizes a nearly-imperceptible refusal perturbation and adds it to an image, causing target MLLMs to likely refuse a safe prompt containing the perturbed image and a safe question. Specifically, we formulate MLLM-Refusal as a constrained optimization problem and propose an algorithm to solve it. Our method offers competitive advantages for MLLM model providers by potentially disrupting user experiences of competing MLLMs, since competing MLLM's users will receive unexpected refusals when they unwittingly use these perturbed images in their prompts. We evaluate MLLM-Refusal on four MLLMs across four datasets, demonstrating its effectiveness in causing competing MLLMs to refuse safe prompts while not affecting non-competing MLLMs. Furthermore, we explore three potential countermeasures -- adding Gaussian noise, DiffPure, and adversarial training. Our results show that they are insufficient: though they can mitigate MLLM-Refusal's effectiveness, they also sacrifice the accuracy and/or efficiency of the competing MLLM. The code is available at https://github.com/Sadcardation/MLLM-Refusal.
Abstract:Generative AI raises many societal concerns such as boosting disinformation and propaganda campaigns. Watermarking AI-generated content is a key technology to address these concerns and has been widely deployed in industry. However, watermarking is vulnerable to removal attacks and forgery attacks. In this work, we propose the first image watermarks with certified robustness guarantees against removal and forgery attacks. Our method leverages randomized smoothing, a popular technique to build certifiably robust classifiers and regression models. Our major technical contributions include extending randomized smoothing to watermarking by considering its unique characteristics, deriving the certified robustness guarantees, and designing algorithms to estimate them. Moreover, we extensively evaluate our image watermarks in terms of both certified and empirical robustness. Our code is available at \url{https://github.com/zhengyuan-jiang/Watermark-Library}.
Abstract:Significant advancements in video diffusion models have brought substantial progress to the field of text-to-video (T2V) synthesis. However, existing T2V synthesis model struggle to accurately generate complex motion dynamics, leading to a reduction in video realism. One possible solution is to collect massive data and train the model on it, but this would be extremely expensive. To alleviate this problem, in this paper, we reformulate the typical T2V generation process as a search-based generation pipeline. Instead of scaling up the model training, we employ existing videos as the motion prior database. Specifically, we divide T2V generation process into two steps: (i) For a given prompt input, we search existing text-video datasets to find videos with text labels that closely match the prompt motions. We propose a tailored search algorithm that emphasizes object motion features. (ii) Retrieved videos are processed and distilled into motion priors to fine-tune a pre-trained base T2V model, followed by generating desired videos using input prompt. By utilizing the priors gleaned from the searched videos, we enhance the realism of the generated videos' motion. All operations can be finished on a single NVIDIA RTX 4090 GPU. We validate our method against state-of-the-art T2V models across diverse prompt inputs. The code will be public.
Abstract:Watermark has been widely deployed by industry to detect AI-generated images. A recent watermarking framework called \emph{Stable Signature} (proposed by Meta) roots watermark into the parameters of a diffusion model's decoder such that its generated images are inherently watermarked. Stable Signature makes it possible to watermark images generated by \emph{open-source} diffusion models and was claimed to be robust against removal attacks. In this work, we propose a new attack to remove the watermark from a diffusion model by fine-tuning it. Our results show that our attack can effectively remove the watermark from a diffusion model such that its generated images are non-watermarked, while maintaining the visual quality of the generated images. Our results highlight that Stable Signature is not as stable as previously thought.
Abstract:Several companies--such as Google, Microsoft, and OpenAI--have deployed techniques to watermark AI-generated content to enable proactive detection. However, existing literature mainly focuses on user-agnostic detection. Attribution aims to further trace back the user of a generative-AI service who generated a given content detected as AI-generated. Despite its growing importance, attribution is largely unexplored. In this work, we aim to bridge this gap by providing the first systematic study on watermark-based, user-aware detection and attribution of AI-generated content. Specifically, we theoretically study the detection and attribution performance via rigorous probabilistic analysis. Moreover, we develop an efficient algorithm to select watermarks for the users to enhance attribution performance. Both our theoretical and empirical results show that watermark-based detection and attribution inherit the accuracy and (non-)robustness properties of the watermarking method.
Abstract:Watermark has been widely deployed by industry to detect AI-generated images. The robustness of such watermark-based detector against evasion attacks in the white-box and black-box settings is well understood in the literature. However, the robustness in the no-box setting is much less understood. In particular, multiple studies claimed that image watermark is robust in such setting. In this work, we propose a new transfer evasion attack to image watermark in the no-box setting. Our transfer attack adds a perturbation to a watermarked image to evade multiple surrogate watermarking models trained by the attacker itself, and the perturbed watermarked image also evades the target watermarking model. Our major contribution is to show that, both theoretically and empirically, watermark-based AI-generated image detector is not robust to evasion attacks even if the attacker does not have access to the watermarking model nor the detection API.
Abstract:Data poisoning attacks spoof a recommender system to make arbitrary, attacker-desired recommendations via injecting fake users with carefully crafted rating scores into the recommender system. We envision a cat-and-mouse game for such data poisoning attacks and their defenses, i.e., new defenses are designed to defend against existing attacks and new attacks are designed to break them. To prevent such a cat-and-mouse game, we propose PORE, the first framework to build provably robust recommender systems in this work. PORE can transform any existing recommender system to be provably robust against any untargeted data poisoning attacks, which aim to reduce the overall performance of a recommender system. Suppose PORE recommends top-$N$ items to a user when there is no attack. We prove that PORE still recommends at least $r$ of the $N$ items to the user under any data poisoning attack, where $r$ is a function of the number of fake users in the attack. Moreover, we design an efficient algorithm to compute $r$ for each user. We empirically evaluate PORE on popular benchmark datasets.