The Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology
Abstract:Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
Abstract:Traditional workflow-based agents exhibit limited intelligence when addressing real-world problems requiring tool invocation. Tool-integrated reasoning (TIR) agents capable of autonomous reasoning and tool invocation are rapidly emerging as a powerful approach for complex decision-making tasks involving multi-step interactions with external environments. In this work, we introduce MindWatcher, a TIR agent integrating interleaved thinking and multimodal chain-of-thought (CoT) reasoning. MindWatcher can autonomously decide whether and how to invoke diverse tools and coordinate their use, without relying on human prompts or workflows. The interleaved thinking paradigm enables the model to switch between thinking and tool calling at any intermediate stage, while its multimodal CoT capability allows manipulation of images during reasoning to yield more precise search results. We implement automated data auditing and evaluation pipelines, complemented by manually curated high-quality datasets for training, and we construct a benchmark, called MindWatcher-Evaluate Bench (MWE-Bench), to evaluate its performance. MindWatcher is equipped with a comprehensive suite of auxiliary reasoning tools, enabling it to address broad-domain multimodal problems. A large-scale, high-quality local image retrieval database, covering eight categories including cars, animals, and plants, endows model with robust object recognition despite its small size. Finally, we design a more efficient training infrastructure for MindWatcher, enhancing training speed and hardware utilization. Experiments not only demonstrate that MindWatcher matches or exceeds the performance of larger or more recent models through superior tool invocation, but also uncover critical insights for agent training, such as the genetic inheritance phenomenon in agentic RL.




Abstract:Autoregressive (AR) image models achieve diffusion-level quality but suffer from sequential inference, requiring approximately 2,000 steps for a 576x576 image. Speculative decoding with draft trees accelerates LLMs yet underperforms on visual AR models due to spatially varying token prediction difficulty. We identify a key obstacle in applying speculative decoding to visual AR models: inconsistent acceptance rates across draft trees due to varying prediction difficulties in different image regions. We propose Adjacency-Adaptive Dynamical Draft Trees (ADT-Tree), an adjacency-adaptive dynamic draft tree that dynamically adjusts draft tree depth and width by leveraging adjacent token states and prior acceptance rates. ADT-Tree initializes via horizontal adjacency, then refines depth/width via bisectional adaptation, yielding deeper trees in simple regions and wider trees in complex ones. The empirical evaluations on MS-COCO 2017 and PartiPrompts demonstrate that ADT-Tree achieves speedups of 3.13xand 3.05x, respectively. Moreover, it integrates seamlessly with relaxed sampling methods such as LANTERN, enabling further acceleration. Code is available at https://github.com/Haodong-Lei-Ray/ADT-Tree.




Abstract:Event cameras offer unique advantages for vision tasks in challenging environments, yet processing asynchronous event streams remains an open challenge. While existing methods rely on specialized architectures or resource-intensive training, the potential of leveraging modern Visual Foundation Models (VFMs) pretrained on image data remains under-explored for event-based vision. To address this, we propose Temporal-Guided VFM (TGVFM), a novel framework that integrates VFMs with our temporal context fusion block seamlessly to bridge this gap. Our temporal block introduces three key components: (1) Long-Range Temporal Attention to model global temporal dependencies, (2) Dual Spatiotemporal Attention for multi-scale frame correlation, and (3) Deep Feature Guidance Mechanism to fuse semantic-temporal features. By retraining event-to-video models on real-world data and leveraging transformer-based VFMs, TGVFM preserves spatiotemporal dynamics while harnessing pretrained representations. Experiments demonstrate SoTA performance across semantic segmentation, depth estimation, and object detection, with improvements of 16%, 21%, and 16% over existing methods, respectively. Overall, this work unlocks the cross-modality potential of image-based VFMs for event-based vision with temporal reasoning. Code is available at https://github.com/XiaRho/TGVFM.
Abstract:Artificial intelligence is undergoing a profound transition from a computational instrument to an autonomous originator of scientific knowledge. This emerging paradigm, the AI scientist, is architected to emulate the complete scientific workflow-from initial hypothesis generation to the final synthesis of publishable findings-thereby promising to fundamentally reshape the pace and scale of discovery. However, the rapid and unstructured proliferation of these systems has created a fragmented research landscape, obscuring overarching methodological principles and developmental trends. This survey provides a systematic and comprehensive synthesis of this domain by introducing a unified, six-stage methodological framework that deconstructs the end-to-end scientific process into: Literature Review, Idea Generation, Experimental Preparation, Experimental Execution, Scientific Writing, and Paper Generation. Through this analytical lens, we chart the field's evolution from early Foundational Modules (2022-2023) to integrated Closed-Loop Systems (2024), and finally to the current frontier of Scalability, Impact, and Human-AI Collaboration (2025-present). By rigorously synthesizing these developments, this survey not only clarifies the current state of autonomous science but also provides a critical roadmap for overcoming remaining challenges in robustness and governance, ultimately guiding the next generation of systems toward becoming trustworthy and indispensable partners in human scientific inquiry.
Abstract:Speculative decoding accelerates large language model (LLM) inference by letting a lightweight draft model propose multiple tokens that the target model verifies in parallel. Yet existing training objectives optimize only a single greedy draft path, while decoding follows a tree policy that re-ranks and verifies multiple branches. This draft policy misalignment limits achievable speedups. We introduce Group Tree Optimization (GTO), which aligns training with the decoding-time tree policy through two components: (i) Draft Tree Reward, a sampling-free objective equal to the expected acceptance length of the draft tree under the target model, directly measuring decoding performance; (ii) Group-based Draft Policy Training, a stable optimization scheme that contrasts trees from the current and a frozen reference draft model, forming debiased group-standardized advantages and applying a PPO-style surrogate along the longest accepted sequence for robust updates. We further prove that increasing our Draft Tree Reward provably improves acceptance length and speedup. Across dialogue (MT-Bench), code (HumanEval), and math (GSM8K), and multiple LLMs (e.g., LLaMA-3.1-8B, LLaMA-3.3-70B, Vicuna-1.3-13B, DeepSeek-R1-Distill-LLaMA-8B), GTO increases acceptance length by 7.4% and yields an additional 7.7% speedup over prior state-of-the-art EAGLE-3. By bridging draft policy misalignment, GTO offers a practical, general solution for efficient LLM inference.
Abstract:Intrusion Detection Systems (IDS) play a crucial role in network security defense. However, a significant challenge for IDS in training detection models is the shortage of adequately labeled malicious samples. To address these issues, this paper introduces a novel semi-supervised framework \textbf{GANGRL-LLM}, which integrates Generative Adversarial Networks (GANs) with Large Language Models (LLMs) to enhance malicious code generation and SQL Injection (SQLi) detection capabilities in few-sample learning scenarios. Specifically, our framework adopts a collaborative training paradigm where: (1) the GAN-based discriminator improves malicious pattern recognition through adversarial learning with generated samples and limited real samples; and (2) the LLM-based generator refines the quality of malicious code synthesis using reward signals from the discriminator. The experimental results demonstrate that even with a limited number of labeled samples, our training framework is highly effective in enhancing both malicious code generation and detection capabilities. This dual enhancement capability offers a promising solution for developing adaptive defense systems capable of countering evolving cyber threats.
Abstract:While text-to-3D generation has attracted growing interest, existing methods often struggle to produce 3D assets that align well with human preferences. Current preference alignment techniques for 3D content typically rely on hardly-collected preference-paired multi-view 2D images to train 2D reward models, when then guide 3D generation -- leading to geometric artifacts due to their inherent 2D bias. To address these limitations, we construct 3D-MeshPref, the first large-scale unpaired 3D preference dataset, featuring diverse 3D meshes annotated by a large language model and refined by human evaluators. We then develop RewardCS, the first reward model trained directly on unpaired 3D-MeshPref data using a novel Cauchy-Schwarz divergence objective, enabling effective learning of human-aligned 3D geometric preferences without requiring paired comparisons. Building on this, we propose DreamCS, a unified framework that integrates RewardCS into text-to-3D pipelines -- enhancing both implicit and explicit 3D generation with human preference feedback. Extensive experiments show DreamCS outperforms prior methods, producing 3D assets that are both geometrically faithful and human-preferred. Code and models will be released publicly.
Abstract:Overlapping Speech Detection (OSD) aims to identify regions where multiple speakers overlap in a conversation, a critical challenge in multi-party speech processing. This work proposes a speaker-aware progressive OSD model that leverages a progressive training strategy to enhance the correlation between subtasks such as voice activity detection (VAD) and overlap detection. To improve acoustic representation, we explore the effectiveness of state-of-the-art self-supervised learning (SSL) models, including WavLM and wav2vec 2.0, while incorporating a speaker attention module to enrich features with frame-level speaker information. Experimental results show that the proposed method achieves state-of-the-art performance, with an F1 score of 82.76\% on the AMI test set, demonstrating its robustness and effectiveness in OSD.
Abstract:Long-horizon robotic manipulation poses significant challenges for autonomous systems, requiring extended reasoning, precise execution, and robust error recovery across complex sequential tasks. Current approaches, whether based on static planning or end-to-end visuomotor policies, suffer from error accumulation and lack effective verification mechanisms during execution, limiting their reliability in real-world scenarios. We present Agentic Robot, a brain-inspired framework that addresses these limitations through Standardized Action Procedures (SAP)--a novel coordination protocol governing component interactions throughout manipulation tasks. Drawing inspiration from Standardized Operating Procedures (SOPs) in human organizations, SAP establishes structured workflows for planning, execution, and verification phases. Our architecture comprises three specialized components: (1) a large reasoning model that decomposes high-level instructions into semantically coherent subgoals, (2) a vision-language-action executor that generates continuous control commands from real-time visual inputs, and (3) a temporal verifier that enables autonomous progression and error recovery through introspective assessment. This SAP-driven closed-loop design supports dynamic self-verification without external supervision. On the LIBERO benchmark, Agentic Robot achieves state-of-the-art performance with an average success rate of 79.6\%, outperforming SpatialVLA by 6.1\% and OpenVLA by 7.4\% on long-horizon tasks. These results demonstrate that SAP-driven coordination between specialized components enhances both performance and interpretability in sequential manipulation, suggesting significant potential for reliable autonomous systems. Project Github: https://agentic-robot.github.io.