The Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering, Huazhong University of Science and Technology
Abstract:The rise of Large Reasoning Models (LRMs) signifies a paradigm shift toward advanced computational reasoning. Yet, this progress disrupts traditional agent frameworks, traditionally anchored by execution-oriented Large Language Models (LLMs). To explore this transformation, we propose the LaRMA framework, encompassing nine tasks across Tool Usage, Plan Design, and Problem Solving, assessed with three top LLMs (e.g., Claude3.5-sonnet) and five leading LRMs (e.g., DeepSeek-R1). Our findings address four research questions: LRMs surpass LLMs in reasoning-intensive tasks like Plan Design, leveraging iterative reflection for superior outcomes; LLMs excel in execution-driven tasks such as Tool Usage, prioritizing efficiency; hybrid LLM-LRM configurations, pairing LLMs as actors with LRMs as reflectors, optimize agent performance by blending execution speed with reasoning depth; and LRMs' enhanced reasoning incurs higher computational costs, prolonged processing, and behavioral challenges, including overthinking and fact-ignoring tendencies. This study fosters deeper inquiry into LRMs' balance of deep thinking and overthinking, laying a critical foundation for future agent design advancements.
Abstract:Recent developments in generative diffusion models have turned many dreams into realities. For video object insertion, existing methods typically require additional information, such as a reference video or a 3D asset of the object, to generate the synthetic motion. However, inserting an object from a single reference photo into a target background video remains an uncharted area due to the lack of unseen motion information. We propose DreamInsert, which achieves Image-to-Video Object Insertion in a training-free manner for the first time. By incorporating the trajectory of the object into consideration, DreamInsert can predict the unseen object movement, fuse it harmoniously with the background video, and generate the desired video seamlessly. More significantly, DreamInsert is both simple and effective, achieving zero-shot insertion without end-to-end training or additional fine-tuning on well-designed image-video data pairs. We demonstrated the effectiveness of DreamInsert through a variety of experiments. Leveraging this capability, we present the first results for Image-to-Video object insertion in a training-free manner, paving exciting new directions for future content creation and synthesis. The code will be released soon.
Abstract:The emergence of Large Language Models (LLMs) has fundamentally transformed natural language processing, making them indispensable across domains ranging from conversational systems to scientific exploration. However, their pre-trained architectures often reveal limitations in specialized contexts, including restricted reasoning capacities, ethical uncertainties, and suboptimal domain-specific performance. These challenges necessitate advanced post-training language models (PoLMs) to address these shortcomings, such as OpenAI-o1/o3 and DeepSeek-R1 (collectively known as Large Reasoning Models, or LRMs). This paper presents the first comprehensive survey of PoLMs, systematically tracing their evolution across five core paradigms: Fine-tuning, which enhances task-specific accuracy; Alignment, which ensures alignment with human preferences; Reasoning, which advances multi-step inference despite challenges in reward design; Efficiency, which optimizes resource utilization amidst increasing complexity; and Integration and Adaptation, which extend capabilities across diverse modalities while addressing coherence issues. Charting progress from ChatGPT's foundational alignment strategies to DeepSeek-R1's innovative reasoning advancements, we illustrate how PoLMs leverage datasets to mitigate biases, deepen reasoning capabilities, and enhance domain adaptability. Our contributions include a pioneering synthesis of PoLM evolution, a structured taxonomy categorizing techniques and datasets, and a strategic agenda emphasizing the role of LRMs in improving reasoning proficiency and domain flexibility. As the first survey of its scope, this work consolidates recent PoLM advancements and establishes a rigorous intellectual framework for future research, fostering the development of LLMs that excel in precision, ethical robustness, and versatility across scientific and societal applications.
Abstract:Distilling advanced Large Language Models' instruction-following capabilities into smaller models using a selected subset has become a mainstream approach in model training. While existing synthetic instruction data selection strategies rely mainly on single-dimensional signals (i.e., reward scores, model perplexity), they fail to capture the complexity of instruction-following across diverse fields. Therefore, we investigate more diverse signals to capture comprehensive instruction-response pair characteristics and propose three foundational metrics that leverage Multi-LLM wisdom, informed by (1) diverse LLM responses and (2) reward model assessment. Building upon base metrics, we propose CrowdSelect, an integrated metric incorporating a clustering-based approach to maintain response diversity. Our comprehensive experiments demonstrate that our foundation metrics consistently improve performance across 4 base models on MT-bench and Arena-Hard. CrowdSelect, efficiently incorporating all metrics, achieves state-of-the-art performance in both Full and LoRA fine-tuning, showing improvements of 4.81% on Arena-Hard and 11.1% on MT-bench with Llama-3.2-3b-instruct. We hope our findings will bring valuable insights for future research in this direction. Code are available at https://github.com/listentm/crowdselect.
Abstract:This paper proposes a novel method for multi-lane convoy formation control that uses large language models (LLMs) to tackle coordination challenges in dynamic highway environments. Each connected and autonomous vehicle in the convoy uses a knowledge-driven approach to make real-time adaptive decisions based on various scenarios. Our method enables vehicles to dynamically perform tasks, including obstacle avoidance, convoy joining/leaving, and escort formation switching, all while maintaining the overall convoy structure. We design a Interlaced formation control strategy based on locally dynamic distributed graphs, ensuring the convoy remains stable and flexible. We conduct extensive experiments in the SUMO simulation platform across multiple traffic scenarios, and the results demonstrate that the proposed method is effective, robust, and adaptable to dynamic environments. The code is available at: https://github.com/chuduanfeng/ConvoyLLM.
Abstract:Multimodal alignment is crucial for various downstream tasks such as cross-modal generation and retrieval. Previous multimodal approaches like CLIP maximize the mutual information mainly by aligning pairwise samples across modalities while overlooking the distributional differences, leading to suboptimal alignment with modality gaps. In this paper, to overcome the limitation, we propose CS-Aligner, a novel and straightforward framework that performs distributional vision-language alignment by integrating Cauchy-Schwarz (CS) divergence with mutual information. In the proposed framework, we find that the CS divergence and mutual information serve complementary roles in multimodal alignment, capturing both the global distribution information of each modality and the pairwise semantic relationships, yielding tighter and more precise alignment. Moreover, CS-Aligher enables incorporating additional information from unpaired data and token-level representations, enhancing flexible and fine-grained alignment in practice. Experiments on text-to-image generation and cross-modality retrieval tasks demonstrate the effectiveness of our method on vision-language alignment.
Abstract:Aligning Large Language Model (LLM) responses with human preferences is vital for building safe and controllable AI systems. While preference optimization methods based on Plackett-Luce (PL) and Bradley-Terry (BT) models have shown promise, they face challenges such as poor handling of harmful content, inefficient use of dispreferred responses, and, specifically for PL, high computational costs. To address these issues, we propose Hard Preference Sampling (HPS), a novel framework for robust and efficient human preference alignment. HPS introduces a training loss that prioritizes the most preferred response while rejecting all dispreferred and harmful ones. It emphasizes "hard" dispreferred responses--those closely resembling preferred ones--to enhance the model's rejection capabilities. By leveraging a single-sample Monte Carlo sampling strategy, HPS reduces computational overhead while maintaining alignment quality. Theoretically, HPS improves sample efficiency over existing PL methods and maximizes the reward margin between preferred and dispreferred responses, ensuring clearer distinctions. Experiments on HH-RLHF and PKU-Safety datasets validate HPS's effectiveness, achieving comparable BLEU and reward scores while greatly improving reward margins and thus reducing harmful content generation.
Abstract:Data augmentation is a cornerstone technique in deep learning, widely used to improve model generalization. Traditional methods like random cropping and color jittering, as well as advanced techniques such as CutOut, Mixup, and CutMix, have achieved notable success across various domains. However, the mechanisms by which data augmentation improves generalization remain poorly understood, and existing theoretical analyses typically focus on individual techniques without a unified explanation. In this work, we present a unified theoretical framework that elucidates how data augmentation enhances generalization through two key effects: partial semantic feature removal and feature mixing. Partial semantic feature removal reduces the model's reliance on individual feature, promoting diverse feature learning and better generalization. Feature mixing, by scaling down original semantic features and introducing noise, increases training complexity, driving the model to develop more robust features. Advanced methods like CutMix integrate both effects, achieving complementary benefits. Our theoretical insights are further supported by experimental results, validating the effectiveness of this unified perspective.
Abstract:Understanding the internal mechanisms of transformer-based language models remains challenging. Mechanistic interpretability based on circuit discovery aims to reverse engineer neural networks by analyzing their internal processes at the level of computational subgraphs. In this paper, we revisit existing gradient-based circuit identification methods and find that their performance is either affected by the zero-gradient problem or saturation effects, where edge attribution scores become insensitive to input changes, resulting in noisy and unreliable attribution evaluations for circuit components. To address the saturation effect, we propose Edge Attribution Patching with GradPath (EAP-GP), EAP-GP introduces an integration path, starting from the input and adaptively following the direction of the difference between the gradients of corrupted and clean inputs to avoid the saturated region. This approach enhances attribution reliability and improves the faithfulness of circuit identification. We evaluate EAP-GP on 6 datasets using GPT-2 Small, GPT-2 Medium, and GPT-2 XL. Experimental results demonstrate that EAP-GP outperforms existing methods in circuit faithfulness, achieving improvements up to 17.7%. Comparisons with manually annotated ground-truth circuits demonstrate that EAP-GP achieves precision and recall comparable to or better than previous approaches, highlighting its effectiveness in identifying accurate circuits.
Abstract:Recently, numerous benchmarks have been developed to evaluate the logical reasoning abilities of large language models (LLMs). However, assessing the equally important creative capabilities of LLMs is challenging due to the subjective, diverse, and data-scarce nature of creativity, especially in multimodal scenarios. In this paper, we consider the comprehensive pipeline for evaluating the creativity of multimodal LLMs, with a focus on suitable evaluation platforms and methodologies. First, we find the Oogiri game, a creativity-driven task requiring humor, associative thinking, and the ability to produce unexpected responses to text, images, or both. This game aligns well with the input-output structure of modern multimodal LLMs and benefits from a rich repository of high-quality, human-annotated creative responses, making it an ideal platform for studying LLM creativity. Next, beyond using the Oogiri game for standard evaluations like ranking and selection, we propose LoTbench, an interactive, causality-aware evaluation framework, to further address some intrinsic risks in standard evaluations, such as information leakage and limited interpretability. The proposed LoTbench not only quantifies LLM creativity more effectively but also visualizes the underlying creative thought processes. Our results show that while most LLMs exhibit constrained creativity, the performance gap between LLMs and humans is not insurmountable. Furthermore, we observe a strong correlation between results from the multimodal cognition benchmark MMMU and LoTbench, but only a weak connection with traditional creativity metrics. This suggests that LoTbench better aligns with human cognitive theories, highlighting cognition as a critical foundation in the early stages of creativity and enabling the bridging of diverse concepts. https://lotbench.github.io