Abstract:Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges in this task: 1) the identity decoupling problem, where directly adopting existing customization methods inevitably mix attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training such a model that represents and decouples various concepts well. To address these challenges, we introduce ConceptMaster, an innovative framework that effectively tackles the critical issues of identity decoupling while maintaining concept fidelity in customized videos. Specifically, we introduce a novel strategy of learning decoupled multi-concept embeddings that are injected into the diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To further overcome the scarcity of high-quality MCVC data, we carefully establish a data construction pipeline, which enables systematic collection of precise multi-concept video-entity data across diverse concepts. A comprehensive benchmark is designed to validate the effectiveness of our model from three critical dimensions: concept fidelity, identity decoupling ability, and video generation quality across six different concept composition scenarios. Extensive experiments demonstrate that our ConceptMaster significantly outperforms previous approaches for this task, paving the way for generating personalized and semantically accurate videos across multiple concepts.
Abstract:As an alternative to expensive expert evaluation, Image Aesthetic Assessment (IAA) stands out as a crucial task in computer vision. However, traditional IAA methods are typically constrained to a single data source or task, restricting the universality and broader application. In this work, to better align with human aesthetics, we propose a Unified Multi-modal Image Aesthetic Assessment (UNIAA) framework, including a Multi-modal Large Language Model (MLLM) named UNIAA-LLaVA and a comprehensive benchmark named UNIAA-Bench. We choose MLLMs with both visual perception and language ability for IAA and establish a low-cost paradigm for transforming the existing datasets into unified and high-quality visual instruction tuning data, from which the UNIAA-LLaVA is trained. To further evaluate the IAA capability of MLLMs, we construct the UNIAA-Bench, which consists of three aesthetic levels: Perception, Description, and Assessment. Extensive experiments validate the effectiveness and rationality of UNIAA. UNIAA-LLaVA achieves competitive performance on all levels of UNIAA-Bench, compared with existing MLLMs. Specifically, our model performs better than GPT-4V in aesthetic perception and even approaches the junior-level human. We find MLLMs have great potential in IAA, yet there remains plenty of room for further improvement. The UNIAA-LLaVA and UNIAA-Bench will be released.
Abstract:The semantically disentangled latent subspace in GAN provides rich interpretable controls in image generation. This paper includes two contributions on semantic latent subspace analysis in the scenario of face generation using StyleGAN2. First, we propose a novel approach to disentangle latent subspace semantics by exploiting existing face analysis models, e.g., face parsers and face landmark detectors. These models provide the flexibility to construct various criterions with very concrete and interpretable semantic meanings (e.g., change face shape or change skin color) to restrict latent subspace disentanglement. Rich latent space controls unknown previously can be discovered using the constructed criterions. Second, we propose a new perspective to explain the behavior of a CNN classifier by generating counterfactuals in the interpretable latent subspaces we discovered. This explanation helps reveal whether the classifier learns semantics as intended. Experiments on various disentanglement criterions demonstrate the effectiveness of our approach. We believe this approach contributes to both areas of image manipulation and counterfactual explainability of CNNs. The code is available at \url{https://github.com/prclibo/ice}.
Abstract:Recent success of generative adversarial networks (GAN) has made great progress on the face animation task. However, the complex scene structure of a face image still makes it a challenge to generate videos with face poses significantly deviating from the source image. On one hand, without knowing the facial geometric structure, generated face images might be improperly distorted. On the other hand, some area of the generated image might be occluded in the source image, which makes it difficult for GAN to generate realistic appearance. To address these problems, we propose a structure aware face animation (SAFA) method which constructs specific geometric structures to model different components of a face image. Following the well recognized motion based face animation technique, we use a 3D morphable model (3DMM) to model the face, multiple affine transforms to model the other foreground components like hair and beard, and an identity transform to model the background. The 3DMM geometric embedding not only helps generate realistic structure for the driving scene, but also contributes to better perception of occluded area in the generated image. Besides, we further propose to exploit the widely studied inpainting technique to faithfully recover the occluded image area. Both quantitative and qualitative experiment results have shown the superiority of our method. Code is available at https://github.com/Qiulin-W/SAFA.