Abstract:Sora's high-motion intensity and long consistent videos have significantly impacted the field of video generation, attracting unprecedented attention. However, existing publicly available datasets are inadequate for generating Sora-like videos, as they mainly contain short videos with low motion intensity and brief captions. To address these issues, we propose MiraData, a high-quality video dataset that surpasses previous ones in video duration, caption detail, motion strength, and visual quality. We curate MiraData from diverse, manually selected sources and meticulously process the data to obtain semantically consistent clips. GPT-4V is employed to annotate structured captions, providing detailed descriptions from four different perspectives along with a summarized dense caption. To better assess temporal consistency and motion intensity in video generation, we introduce MiraBench, which enhances existing benchmarks by adding 3D consistency and tracking-based motion strength metrics. MiraBench includes 150 evaluation prompts and 17 metrics covering temporal consistency, motion strength, 3D consistency, visual quality, text-video alignment, and distribution similarity. To demonstrate the utility and effectiveness of MiraData, we conduct experiments using our DiT-based video generation model, MiraDiT. The experimental results on MiraBench demonstrate the superiority of MiraData, especially in motion strength.
Abstract:Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements, typically involving labor-intensive real-world capturing. Despite advancements in generative AI for video creation, achieving precise control over motion for interactive video asset generation remains challenging. To this end, we propose Image Conductor, a method for precise control of camera transitions and object movements to generate video assets from a single image. An well-cultivated training strategy is proposed to separate distinct camera and object motion by camera LoRA weights and object LoRA weights. To further address cinematographic variations from ill-posed trajectories, we introduce a camera-free guidance technique during inference, enhancing object movements while eliminating camera transitions. Additionally, we develop a trajectory-oriented video motion data curation pipeline for training. Quantitative and qualitative experiments demonstrate our method's precision and fine-grained control in generating motion-controllable videos from images, advancing the practical application of interactive video synthesis. Project webpage available at https://liyaowei-stu.github.io/project/ImageConductor/
Abstract:With the advancement of collaborative perception, the role of aerial-ground collaborative perception, a crucial component, is becoming increasingly important. The demand for collaborative perception across different perspectives to construct more comprehensive perceptual information is growing. However, challenges arise due to the disparities in the field of view between cross-domain agents and their varying sensitivity to information in images. Additionally, when we transform image features into Bird's Eye View (BEV) features for collaboration, we need accurate depth information. To address these issues, we propose a framework specifically designed for aerial-ground collaboration. First, to mitigate the lack of datasets for aerial-ground collaboration, we develop a virtual dataset named V2U-COO for our research. Second, we design a Cross-Domain Cross-Adaptation (CDCA) module to align the target information obtained from different domains, thereby achieving more accurate perception results. Finally, we introduce a Collaborative Depth Optimization (CDO) module to obtain more precise depth estimation results, leading to more accurate perception outcomes. We conduct extensive experiments on both our virtual dataset and a public dataset to validate the effectiveness of our framework. Our experiments on the V2U-COO dataset and the DAIR-V2X dataset demonstrate that our method improves detection accuracy by 6.1% and 2.7%, respectively.
Abstract:Current instruction-based editing methods, such as InstructPix2Pix, often fail to produce satisfactory results in complex scenarios due to their dependence on the simple CLIP text encoder in diffusion models. To rectify this, this paper introduces SmartEdit, a novel approach to instruction-based image editing that leverages Multimodal Large Language Models (MLLMs) to enhance their understanding and reasoning capabilities. However, direct integration of these elements still faces challenges in situations requiring complex reasoning. To mitigate this, we propose a Bidirectional Interaction Module that enables comprehensive bidirectional information interactions between the input image and the MLLM output. During training, we initially incorporate perception data to boost the perception and understanding capabilities of diffusion models. Subsequently, we demonstrate that a small amount of complex instruction editing data can effectively stimulate SmartEdit's editing capabilities for more complex instructions. We further construct a new evaluation dataset, Reason-Edit, specifically tailored for complex instruction-based image editing. Both quantitative and qualitative results on this evaluation dataset indicate that our SmartEdit surpasses previous methods, paving the way for the practical application of complex instruction-based image editing.
Abstract:Motions in a video primarily consist of camera motion, induced by camera movement, and object motion, resulting from object movement. Accurate control of both camera and object motion is essential for video generation. However, existing works either mainly focus on one type of motion or do not clearly distinguish between the two, limiting their control capabilities and diversity. Therefore, this paper presents MotionCtrl, a unified and flexible motion controller for video generation designed to effectively and independently control camera and object motion. The architecture and training strategy of MotionCtrl are carefully devised, taking into account the inherent properties of camera motion, object motion, and imperfect training data. Compared to previous methods, MotionCtrl offers three main advantages: 1) It effectively and independently controls camera motion and object motion, enabling more fine-grained motion control and facilitating flexible and diverse combinations of both types of motion. 2) Its motion conditions are determined by camera poses and trajectories, which are appearance-free and minimally impact the appearance or shape of objects in generated videos. 3) It is a relatively generalizable model that can adapt to a wide array of camera poses and trajectories once trained. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of MotionCtrl over existing methods.
Abstract:Incorporating a customized object into image generation presents an attractive feature in text-to-image generation. However, existing optimization-based and encoder-based methods are hindered by drawbacks such as time-consuming optimization, insufficient identity preservation, and a prevalent copy-pasting effect. To overcome these limitations, we introduce CustomNet, a novel object customization approach that explicitly incorporates 3D novel view synthesis capabilities into the object customization process. This integration facilitates the adjustment of spatial position relationships and viewpoints, yielding diverse outputs while effectively preserving object identity. Moreover, we introduce delicate designs to enable location control and flexible background control through textual descriptions or specific user-defined images, overcoming the limitations of existing 3D novel view synthesis methods. We further leverage a dataset construction pipeline that can better handle real-world objects and complex backgrounds. Equipped with these designs, our method facilitates zero-shot object customization without test-time optimization, offering simultaneous control over the viewpoints, location, and background. As a result, our CustomNet ensures enhanced identity preservation and generates diverse, harmonious outputs.
Abstract:Fourier phase retrieval(PR) is a severely ill-posed inverse problem that arises in various applications. To guarantee a unique solution and relieve the dependence on the initialization, background information can be exploited as a structural priors. However, the requirement for the background information may be challenging when moving to the high-resolution imaging. At the same time, the previously proposed projected gradient descent(PGD) method also demands much background information. In this paper, we present an improved theoretical result about the demand for the background information, along with two Douglas Rachford(DR) based methods. Analytically, we demonstrate that the background required to ensure a unique solution can be decreased by nearly $1/2$ for the 2-D signals compared to the 1-D signals. By generalizing the results into $d$-dimension, we show that the length of the background information more than $(2^{\frac{d+1}{d}}-1)$ folds of the signal is sufficient to ensure the uniqueness. At the same time, we also analyze the stability and robustness of the model when measurements and background information are corrupted by the noise. Furthermore, two methods called Background Douglas-Rachford (BDR) and Convex Background Douglas-Rachford (CBDR) are proposed. BDR which is a kind of non-convex method is proven to have the local R-linear convergence rate under mild assumptions. Instead, CBDR method uses the techniques of convexification and can be proven to own a global convergence guarantee as long as the background information is sufficient. To support this, a new property called F-RIP is established. We test the performance of the proposed methods through simulations as well as real experimental measurements, and demonstrate that they achieve a higher recovery rate with less background information compared to the PGD method.
Abstract:Fourier phase retrieval (FPR) is a challenging task widely used in various applications. It involves recovering an unknown signal from its Fourier phaseless measurements. FPR with few measurements is important for reducing time and hardware costs, but it suffers from serious ill-posedness. Recently, untrained neural networks have offered new approaches by introducing learned priors to alleviate the ill-posedness without requiring any external data. However, they may not be ideal for reconstructing fine details in images and can be computationally expensive. This paper proposes an untrained neural network (NN) embedded algorithm based on the alternating direction method of multipliers (ADMM) framework to solve FPR with few measurements. Specifically, we use a generative network to represent the image to be recovered, which confines the image to the space defined by the network structure. To improve the ability to represent high-frequency information, total variation (TV) regularization is imposed to facilitate the recovery of local structures in the image. Furthermore, to reduce the computational cost mainly caused by the parameter updates of the untrained NN, we develop an accelerated algorithm that adaptively trades off between explicit and implicit regularization. Experimental results indicate that the proposed algorithm outperforms existing untrained NN-based algorithms with fewer computational resources and even performs competitively against trained NN-based algorithms.
Abstract:3D GAN inversion aims to achieve high reconstruction fidelity and reasonable 3D geometry simultaneously from a single image input. However, existing 3D GAN inversion methods rely on time-consuming optimization for each individual case. In this work, we introduce a novel encoder-based inversion framework based on EG3D, one of the most widely-used 3D GAN models. We leverage the inherent properties of EG3D's latent space to design a discriminator and a background depth regularization. This enables us to train a geometry-aware encoder capable of converting the input image into corresponding latent code. Additionally, we explore the feature space of EG3D and develop an adaptive refinement stage that improves the representation ability of features in EG3D to enhance the recovery of fine-grained textural details. Finally, we propose an occlusion-aware fusion operation to prevent distortion in unobserved regions. Our method achieves impressive results comparable to optimization-based methods while operating up to 500 times faster. Our framework is well-suited for applications such as semantic editing.
Abstract:Fourier phase retrieval (FPR) is an inverse problem that recovers the signal from its Fourier magnitude measurement, it's ill-posed especially when the sampling rates are low. In this paper, an untrained generative prior is introduced to attack the ill-posedness. Based on the alternating direction method of multipliers (ADMM), an algorithm utilizing the untrained generative network called Net-ADM is proposed to solve the FPR problem. Firstly, the objective function is smoothed and the dimension of the variable is raised to facilitate calculation. Then an untrained generative network is embedded in the iterative process of ADMM to project an estimated signal into the generative space, and the projected signal is applied to next iteration of ADMM. We theoretically analyzed the two projections included in the algorithm, one makes the objective function descent, and the other gets the estimation closer to the optimal solution. Numerical experiments show that the reconstruction performance and robustness of the proposed algorithm are superior to prior works, especially when the sampling rates are low.