Abstract:Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements, typically involving labor-intensive real-world capturing. Despite advancements in generative AI for video creation, achieving precise control over motion for interactive video asset generation remains challenging. To this end, we propose Image Conductor, a method for precise control of camera transitions and object movements to generate video assets from a single image. An well-cultivated training strategy is proposed to separate distinct camera and object motion by camera LoRA weights and object LoRA weights. To further address cinematographic variations from ill-posed trajectories, we introduce a camera-free guidance technique during inference, enhancing object movements while eliminating camera transitions. Additionally, we develop a trajectory-oriented video motion data curation pipeline for training. Quantitative and qualitative experiments demonstrate our method's precision and fine-grained control in generating motion-controllable videos from images, advancing the practical application of interactive video synthesis. Project webpage available at https://liyaowei-stu.github.io/project/ImageConductor/
Abstract:Real-time detection and prediction of extreme weather protect human lives and infrastructure. Traditional methods rely on numerical threshold setting and manual interpretation of weather heatmaps with Geographic Information Systems (GIS), which can be slow and error-prone. Our research redefines Extreme Weather Events Detection (EWED) by framing it as a Visual Question Answering (VQA) problem, thereby introducing a more precise and automated solution. Leveraging Vision-Language Models (VLM) to simultaneously process visual and textual data, we offer an effective aid to enhance the analysis process of weather heatmaps. Our initial assessment of general-purpose VLMs (e.g., GPT-4-Vision) on EWED revealed poor performance, characterized by low accuracy and frequent hallucinations due to inadequate color differentiation and insufficient meteorological knowledge. To address these challenges, we introduce ClimateIQA, the first meteorological VQA dataset, which includes 8,760 wind gust heatmaps and 254,040 question-answer pairs covering four question types, both generated from the latest climate reanalysis data. We also propose Sparse Position and Outline Tracking (SPOT), an innovative technique that leverages OpenCV and K-Means clustering to capture and depict color contours in heatmaps, providing ClimateIQA with more accurate color spatial location information. Finally, we present Climate-Zoo, the first meteorological VLM collection, which adapts VLMs to meteorological applications using the ClimateIQA dataset. Experiment results demonstrate that models from Climate-Zoo substantially outperform state-of-the-art general VLMs, achieving an accuracy increase from 0% to over 90% in EWED verification. The datasets and models in this study are publicly available for future climate science research: https://github.com/AlexJJJChen/Climate-Zoo.
Abstract:While vision-language pre-trained models (VL-PTMs) have advanced multimodal research in recent years, their mastery in a few languages like English restricts their applicability in broader communities. To this end, there is an increasing interest in developing multilingual VL models via a joint-learning setup, which, however, could be unrealistic due to expensive costs and data availability. In this work, we propose to extend VL-PTMs' language capacity by continual language learning (CLL), where a model needs to update its linguistic knowledge incrementally without suffering from catastrophic forgetting (CF). We begin our study by introducing a model dubbed CLL-CLIP, which builds upon CLIP, a prevailing VL-PTM that has acquired image-English text alignment. Specifically, CLL-CLIP contains an expandable token embedding layer to handle linguistic differences. It solely trains token embeddings to improve memory stability and is optimized under cross-modal and cross-lingual objectives to learn the alignment between images and multilingual texts. To alleviate CF raised by covariate shift and lexical overlap, we further propose a novel approach that ensures the identical distribution of all token embeddings during initialization and regularizes token embedding learning during training. We construct a CLL benchmark covering 36 languages based on MSCOCO and XM3600 datasets and then evaluate multilingual image-text retrieval performance. Extensive experiments verify the effectiveness of CLL-CLIP and show that our approach can boost CLL-CLIP, e.g., by 6.7% in text-to-image average Recall@1 on XM3600, and improve various state-of-the-art methods consistently. Our code and data are available at \url{https://github.com/yangbang18/CLFM}.
Abstract:Text-based Person Retrieval aims to retrieve the target person images given a textual query. The primary challenge lies in bridging the substantial gap between vision and language modalities, especially when dealing with limited large-scale datasets. In this paper, we introduce a CLIP-based Synergistic Knowledge Transfer(CSKT) approach for TBPR. Specifically, to explore the CLIP's knowledge on input side, we first propose a Bidirectional Prompts Transferring (BPT) module constructed by text-to-image and image-to-text bidirectional prompts and coupling projections. Secondly, Dual Adapters Transferring (DAT) is designed to transfer knowledge on output side of Multi-Head Self-Attention (MHSA) in vision and language. This synergistic two-way collaborative mechanism promotes the early-stage feature fusion and efficiently exploits the existing knowledge of CLIP. CSKT outperforms the state-of-the-art approaches across three benchmark datasets when the training parameters merely account for 7.4% of the entire model, demonstrating its remarkable efficiency, effectiveness and generalization.
Abstract:The recent video grounding works attempt to introduce vanilla contrastive learning into video grounding. However, we claim that this naive solution is suboptimal. Contrastive learning requires two key properties: (1) \emph{alignment} of features of similar samples, and (2) \emph{uniformity} of the induced distribution of the normalized features on the hypersphere. Due to two annoying issues in video grounding: (1) the co-existence of some visual entities in both ground truth and other moments, \ie semantic overlapping; (2) only a few moments in the video are annotated, \ie sparse annotation dilemma, vanilla contrastive learning is unable to model the correlations between temporally distant moments and learned inconsistent video representations. Both characteristics lead to vanilla contrastive learning being unsuitable for video grounding. In this paper, we introduce Geodesic and Game Localization (G2L), a semantically aligned and uniform video grounding framework via geodesic and game theory. We quantify the correlations among moments leveraging the geodesic distance that guides the model to learn the correct cross-modal representations. Furthermore, from the novel perspective of game theory, we propose semantic Shapley interaction based on geodesic distance sampling to learn fine-grained semantic alignment in similar moments. Experiments on three benchmarks demonstrate the effectiveness of our method.
Abstract:Large-scale pre-training has brought unimodal fields such as computer vision and natural language processing to a new era. Following this trend, the size of multi-modal learning models constantly increases, leading to an urgent need to reduce the massive computational cost of finetuning these models for downstream tasks. In this paper, we propose an efficient and flexible multimodal fusion method, namely PMF, tailored for fusing unimodally pre-trained transformers. Specifically, we first present a modular multimodal fusion framework that exhibits high flexibility and facilitates mutual interactions among different modalities. In addition, we disentangle vanilla prompts into three types in order to learn different optimizing objectives for multimodal learning. It is also worth noting that we propose to add prompt vectors only on the deep layers of the unimodal transformers, thus significantly reducing the training memory usage. Experiment results show that our proposed method achieves comparable performance to several other multimodal finetuning methods with less than 3% trainable parameters and up to 66% saving of training memory usage.
Abstract:Automatic radiology report generation has attracted enormous research interest due to its practical value in reducing the workload of radiologists. However, simultaneously establishing global correspondences between the image (e.g., Chest X-ray) and its related report and local alignments between image patches and keywords remains challenging. To this end, we propose an Unify, Align and then Refine (UAR) approach to learn multi-level cross-modal alignments and introduce three novel modules: Latent Space Unifier (LSU), Cross-modal Representation Aligner (CRA) and Text-to-Image Refiner (TIR). Specifically, LSU unifies multimodal data into discrete tokens, making it flexible to learn common knowledge among modalities with a shared network. The modality-agnostic CRA learns discriminative features via a set of orthonormal basis and a dual-gate mechanism first and then globally aligns visual and textual representations under a triplet contrastive loss. TIR boosts token-level local alignment via calibrating text-to-image attention with a learnable mask. Additionally, we design a two-stage training procedure to make UAR gradually grasp cross-modal alignments at different levels, which imitates radiologists' workflow: writing sentence by sentence first and then checking word by word. Extensive experiments and analyses on IU-Xray and MIMIC-CXR benchmark datasets demonstrate the superiority of our UAR against varied state-of-the-art methods.
Abstract:With the rise of short videos, the demand for selecting appropriate background music (BGM) for a video has increased significantly, video-music retrieval (VMR) task gradually draws much attention by research community. As other cross-modal learning tasks, existing VMR approaches usually attempt to measure the similarity between the video and music in the feature space. However, they (1) neglect the inevitable label noise; (2) neglect to enhance the ability to capture critical video clips. In this paper, we propose a novel saliency-based self-training framework, which is termed SSVMR. Specifically, we first explore to fully make use of the information containing in the training dataset by applying a semi-supervised method to suppress the adverse impact of label noise problem, where a self-training approach is adopted. In addition, we propose to capture the saliency of the video by mixing two videos at span level and preserving the locality of the two original videos. Inspired by back translation in NLP, we also conduct back retrieval to obtain more training data. Experimental results on MVD dataset show that our SSVMR achieves the state-of-the-art performance by a large margin, obtaining a relative improvement of 34.8% over the previous best model in terms of R@1.
Abstract:Video grounding aims to locate a moment of interest matching the given query sentence from an untrimmed video. Previous works ignore the \emph{sparsity dilemma} in video annotations, which fails to provide the context information between potential events and query sentences in the dataset. In this paper, we contend that providing easily available captions which describe general actions \ie, templated captions defined in our paper, will significantly boost the performance. To this end, we propose a Templated Caption Network (TCNet) for video grounding. Specifically, we first introduce dense video captioning to generate dense captions, and then obtain templated captions by Non-Templated Caption Suppression (NTCS). To utilize templated captions better, we propose Caption Guided Attention (CGA) project the semantic relations between templated captions and query sentences into temporal space and fuse them into visual representations. Considering the gap between templated captions and ground truth, we propose Asymmetric Dual Matching Supervised Contrastive Learning (ADMSCL) for constructing more negative pairs to maximize cross-modal mutual information. Without bells and whistles, extensive experiments on three public datasets (\ie, ActivityNet Captions, TACoS and ActivityNet-CG) demonstrate that our method significantly outperforms state-of-the-art methods.