Abstract:Visual Grounding is also known as Referring Expression Comprehension and Phrase Grounding. It involves localizing a natural number of specific regions within an image based on a given textual description. The objective of this task is to emulate the prevalent referential relationships in social conversations, equipping machines with human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we initially examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements and meticulously organize the various settings in visual grounding, thereby establishing precise definitions of these settings to standardize future research and ensure a fair comparison. Additionally, we delve into several advanced topics and highlight numerous applications of visual grounding. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative works in each subtopic over the past decade. To the best, this paper presents the most comprehensive overview currently available in the field of grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding.
Abstract:Preference-based reinforcement learning (PbRL) provides a powerful paradigm to avoid meticulous reward engineering by learning rewards based on human preferences. However, real-time human feedback is hard to obtain in online tasks. Most work suppose there is a "scripted teacher" that utilizes privileged predefined reward to provide preference feedback. In this paper, we propose a RL Self-augmented Large Language Model Feedback (RL-SaLLM-F) technique that does not rely on privileged information for online PbRL. RL-SaLLM-F leverages the reflective and discriminative capabilities of LLM to generate self-augmented trajectories and provide preference labels for reward learning. First, we identify an failure issue in LLM-based preference discrimination, specifically "query ambiguity", in online PbRL. Then LLM is employed to provide preference labels and generate self-augmented imagined trajectories that better achieve the task goal, thereby enhancing the quality and efficiency of feedback. Additionally, a double-check mechanism is introduced to mitigate randomness in the preference labels, improving the reliability of LLM feedback. The experiment across multiple tasks in the MetaWorld benchmark demonstrates the specific contributions of each proposed module in RL-SaLLM-F, and shows that self-augmented LLM feedback can effectively replace the impractical "scripted teacher" feedback. In summary, RL-SaLLM-F introduces a new direction of feedback acquisition in online PbRL that does not rely on any online privileged information, offering an efficient and lightweight solution with LLM-driven feedback.
Abstract:Traditional adversarial attacks typically produce adversarial examples under norm-constrained conditions, whereas unrestricted adversarial examples are free-form with semantically meaningful perturbations. Current unrestricted adversarial impersonation attacks exhibit limited control over adversarial face attributes and often suffer from low transferability. In this paper, we propose a novel Text Controlled Attribute Attack (TCA$^2$) to generate photorealistic adversarial impersonation faces guided by natural language. Specifically, the category-level personal softmax vector is employed to precisely guide the impersonation attacks. Additionally, we propose both data and model augmentation strategies to achieve transferable attacks on unknown target models. Finally, a generative model, \textit{i.e}, Style-GAN, is utilized to synthesize impersonated faces with desired attributes. Extensive experiments on two high-resolution face recognition datasets validate that our TCA$^2$ method can generate natural text-guided adversarial impersonation faces with high transferability. We also evaluate our method on real-world face recognition systems, \textit{i.e}, Face++ and Aliyun, further demonstrating the practical potential of our approach.
Abstract:Cross-modal alignment is crucial for multimodal representation fusion due to the inherent heterogeneity between modalities. While Transformer-based methods have shown promising results in modeling inter-modal relationships, their quadratic computational complexity limits their applicability to long-sequence or large-scale data. Although recent Mamba-based approaches achieve linear complexity, their sequential scanning mechanism poses fundamental challenges in comprehensively modeling cross-modal relationships. To address this limitation, we propose AlignMamba, an efficient and effective method for multimodal fusion. Specifically, grounded in Optimal Transport, we introduce a local cross-modal alignment module that explicitly learns token-level correspondences between different modalities. Moreover, we propose a global cross-modal alignment loss based on Maximum Mean Discrepancy to implicitly enforce the consistency between different modal distributions. Finally, the unimodal representations after local and global alignment are passed to the Mamba backbone for further cross-modal interaction and multimodal fusion. Extensive experiments on complete and incomplete multimodal fusion tasks demonstrate the effectiveness and efficiency of the proposed method.
Abstract:Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.
Abstract:Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.
Abstract:Mamba-based architectures have shown to be a promising new direction for deep learning models owing to their competitive performance and sub-quadratic deployment speed. However, current Mamba multi-modal large language models (MLLM) are insufficient in extracting visual features, leading to imbalanced cross-modal alignment between visual and textural latents, negatively impacting performance on multi-modal tasks. In this work, we propose Empowering Multi-modal Mamba with Structural and Hierarchical Alignment (EMMA), which enables the MLLM to extract fine-grained visual information. Specifically, we propose a pixel-wise alignment module to autoregressively optimize the learning and processing of spatial image-level features along with textual tokens, enabling structural alignment at the image level. In addition, to prevent the degradation of visual information during the cross-model alignment process, we propose a multi-scale feature fusion (MFF) module to combine multi-scale visual features from intermediate layers, enabling hierarchical alignment at the feature level. Extensive experiments are conducted across a variety of multi-modal benchmarks. Our model shows lower latency than other Mamba-based MLLMs and is nearly four times faster than transformer-based MLLMs of similar scale during inference. Due to better cross-modal alignment, our model exhibits lower degrees of hallucination and enhanced sensitivity to visual details, which manifests in superior performance across diverse multi-modal benchmarks. Code will be provided.
Abstract:Open-vocabulary detection is a challenging task due to the requirement of detecting objects based on class names, including those not encountered during training. Existing methods have shown strong zero-shot detection capabilities through pre-training on diverse large-scale datasets. However, these approaches still face two primary challenges: (i) how to universally integrate diverse data sources for end-to-end training, and (ii) how to effectively leverage the language-aware capability for region-level cross-modality understanding. To address these challenges, we propose a novel unified open-vocabulary detection method called OV-DINO, which pre-trains on diverse large-scale datasets with language-aware selective fusion in a unified framework. Specifically, we introduce a Unified Data Integration (UniDI) pipeline to enable end-to-end training and eliminate noise from pseudo-label generation by unifying different data sources into detection-centric data. In addition, we propose a Language-Aware Selective Fusion (LASF) module to enable the language-aware ability of the model through a language-aware query selection and fusion process. We evaluate the performance of the proposed OV-DINO on popular open-vocabulary detection benchmark datasets, achieving state-of-the-art results with an AP of 50.6\% on the COCO dataset and 40.0\% on the LVIS dataset in a zero-shot manner, demonstrating its strong generalization ability. Furthermore, the fine-tuned OV-DINO on COCO achieves 58.4\% AP, outperforming many existing methods with the same backbone. The code for OV-DINO will be available at \href{https://github.com/wanghao9610/OV-DINO}{https://github.com/wanghao9610/OV-DINO}.
Abstract:Over the past decade, most methods in visual place recognition (VPR) have used neural networks to produce feature representations. These networks typically produce a global representation of a place image using only this image itself and neglect the cross-image variations (e.g. viewpoint and illumination), which limits their robustness in challenging scenes. In this paper, we propose a robust global representation method with cross-image correlation awareness for VPR, named CricaVPR. Our method uses the self-attention mechanism to correlate multiple images within a batch. These images can be taken in the same place with different conditions or viewpoints, or even captured from different places. Therefore, our method can utilize the cross-image variations as a cue to guide the representation learning, which ensures more robust features are produced. To further facilitate the robustness, we propose a multi-scale convolution-enhanced adaptation method to adapt pre-trained visual foundation models to the VPR task, which introduces the multi-scale local information to further enhance the cross-image correlation-aware representation. Experimental results show that our method outperforms state-of-the-art methods by a large margin with significantly less training time. Our method achieves 94.5% R@1 on Pitts30k using 512-dim global features. The code is released at https://github.com/Lu-Feng/CricaVPR.
Abstract:Visual place recognition (VPR) is a fundamental task for many applications such as robot localization and augmented reality. Recently, the hierarchical VPR methods have received considerable attention due to the trade-off between accuracy and efficiency. They usually first use global features to retrieve the candidate images, then verify the spatial consistency of matched local features for re-ranking. However, the latter typically relies on the RANSAC algorithm for fitting homography, which is time-consuming and non-differentiable. This makes existing methods compromise to train the network only in global feature extraction. Here, we propose a transformer-based deep homography estimation (DHE) network that takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification. Moreover, we design a re-projection error of inliers loss to train the DHE network without additional homography labels, which can also be jointly trained with the backbone network to help it extract the features that are more suitable for local matching. Extensive experiments on benchmark datasets show that our method can outperform several state-of-the-art methods. And it is more than one order of magnitude faster than the mainstream hierarchical VPR methods using RANSAC. The code is released at https://github.com/Lu-Feng/DHE-VPR.