Abstract:Image-based virtual try-on aims to transfer an in-shop clothing image to a person image. Most existing methods adopt a single global deformation to perform clothing warping directly, which lacks fine-grained modeling of in-shop clothing and leads to distorted clothing appearance. In addition, existing methods usually fail to generate limb details well because they are limited by the used clothing-agnostic person representation without referring to the limb textures of the person image. To address these problems, we propose Limb-aware Virtual Try-on Network named PL-VTON, which performs fine-grained clothing warping progressively and generates high-quality try-on results with realistic limb details. Specifically, we present Progressive Clothing Warping (PCW) that explicitly models the location and size of in-shop clothing and utilizes a two-stage alignment strategy to progressively align the in-shop clothing with the human body. Moreover, a novel gravity-aware loss that considers the fit of the person wearing clothing is adopted to better handle the clothing edges. Then, we design Person Parsing Estimator (PPE) with a non-limb target parsing map to semantically divide the person into various regions, which provides structural constraints on the human body and therefore alleviates texture bleeding between clothing and body regions. Finally, we introduce Limb-aware Texture Fusion (LTF) that focuses on generating realistic details in limb regions, where a coarse try-on result is first generated by fusing the warped clothing image with the person image, then limb textures are further fused with the coarse result under limb-aware guidance to refine limb details. Extensive experiments demonstrate that our PL-VTON outperforms the state-of-the-art methods both qualitatively and quantitatively.
Abstract:Recent advancements in post-training methodologies for large language models (LLMs) have highlighted reinforcement learning (RL) as a critical component for enhancing reasoning. However, the substantial computational costs associated with RL-based approaches have led to growing interest in alternative paradigms, such as Direct Preference Optimization (DPO). In this study, we investigate the effectiveness of DPO in facilitating self-improvement for LLMs through iterative preference-based learning. We demonstrate that a single round of DPO with coarse filtering significantly enhances mathematical reasoning performance, particularly for strong base model. Furthermore, we design an iterative enhancement framework for both the generator and the reward model (RM), enabling their mutual improvement through online interaction across multiple rounds of DPO. Finally, with simple verifiable rewards, our model DPO-VP achieves RL-level performance with significantly lower computational overhead. These findings highlight DPO as a scalable and cost-effective alternative to RL, offering a practical solution for enhancing LLM reasoning in resource-constrained situations.
Abstract:Text-based person retrieval (TPR) has gained significant attention as a fine-grained and challenging task that closely aligns with practical applications. Tailoring CLIP to person domain is now a emerging research topic due to the abundant knowledge of vision-language pretraining, but challenges still remain during fine-tuning: (i) Previous full-model fine-tuning in TPR is computationally expensive and prone to overfitting.(ii) Existing parameter-efficient transfer learning (PETL) for TPR lacks of fine-grained feature extraction. To address these issues, we propose Domain-Aware Mixture-of-Adapters (DM-Adapter), which unifies Mixture-of-Experts (MOE) and PETL to enhance fine-grained feature representations while maintaining efficiency. Specifically, Sparse Mixture-of-Adapters is designed in parallel to MLP layers in both vision and language branches, where different experts specialize in distinct aspects of person knowledge to handle features more finely. To promote the router to exploit domain information effectively and alleviate the routing imbalance, Domain-Aware Router is then developed by building a novel gating function and injecting learnable domain-aware prompts. Extensive experiments show that our DM-Adapter achieves state-of-the-art performance, outperforming previous methods by a significant margin.
Abstract:Recent studies show that the visual place recognition (VPR) method using pre-trained visual foundation models can achieve promising performance. In our previous work, we propose a novel method to realize seamless adaptation of foundation models to VPR (SelaVPR). This method can produce both global and local features that focus on discriminative landmarks to recognize places for two-stage VPR by a parameter-efficient adaptation approach. Although SelaVPR has achieved competitive results, we argue that the previous adaptation is inefficient in training time and GPU memory usage, and the re-ranking paradigm is also costly in retrieval latency and storage usage. In pursuit of higher efficiency and better performance, we propose an extension of the SelaVPR, called SelaVPR++. Concretely, we first design a parameter-, time-, and memory-efficient adaptation method that uses lightweight multi-scale convolution (MultiConv) adapters to refine intermediate features from the frozen foundation backbone. This adaptation method does not back-propagate gradients through the backbone during training, and the MultiConv adapter facilitates feature interactions along the spatial axes and introduces proper local priors, thus achieving higher efficiency and better performance. Moreover, we propose an innovative re-ranking paradigm for more efficient VPR. Instead of relying on local features for re-ranking, which incurs huge overhead in latency and storage, we employ compact binary features for initial retrieval and robust floating-point (global) features for re-ranking. To obtain such binary features, we propose a similarity-constrained deep hashing method, which can be easily integrated into the VPR pipeline. Finally, we improve our training strategy and unify the training protocol of several common training datasets to merge them for better training of VPR models. Extensive experiments show that ......
Abstract:Visual Grounding is also known as Referring Expression Comprehension and Phrase Grounding. It involves localizing a natural number of specific regions within an image based on a given textual description. The objective of this task is to emulate the prevalent referential relationships in social conversations, equipping machines with human-like multimodal comprehension capabilities. Consequently, it has extensive applications in various domains. However, since 2021, visual grounding has witnessed significant advancements, with emerging new concepts such as grounded pre-training, grounding multimodal LLMs, generalized visual grounding, and giga-pixel grounding, which have brought numerous new challenges. In this survey, we initially examine the developmental history of visual grounding and provide an overview of essential background knowledge. We systematically track and summarize the advancements and meticulously organize the various settings in visual grounding, thereby establishing precise definitions of these settings to standardize future research and ensure a fair comparison. Additionally, we delve into several advanced topics and highlight numerous applications of visual grounding. Finally, we outline the challenges confronting visual grounding and propose valuable directions for future research, which may serve as inspiration for subsequent researchers. By extracting common technical details, this survey encompasses the representative works in each subtopic over the past decade. To the best, this paper presents the most comprehensive overview currently available in the field of grounding. This survey is designed to be suitable for both beginners and experienced researchers, serving as an invaluable resource for understanding key concepts and tracking the latest research developments. We keep tracing related works at https://github.com/linhuixiao/Awesome-Visual-Grounding.
Abstract:Preference-based reinforcement learning (PbRL) provides a powerful paradigm to avoid meticulous reward engineering by learning rewards based on human preferences. However, real-time human feedback is hard to obtain in online tasks. Most work suppose there is a "scripted teacher" that utilizes privileged predefined reward to provide preference feedback. In this paper, we propose a RL Self-augmented Large Language Model Feedback (RL-SaLLM-F) technique that does not rely on privileged information for online PbRL. RL-SaLLM-F leverages the reflective and discriminative capabilities of LLM to generate self-augmented trajectories and provide preference labels for reward learning. First, we identify an failure issue in LLM-based preference discrimination, specifically "query ambiguity", in online PbRL. Then LLM is employed to provide preference labels and generate self-augmented imagined trajectories that better achieve the task goal, thereby enhancing the quality and efficiency of feedback. Additionally, a double-check mechanism is introduced to mitigate randomness in the preference labels, improving the reliability of LLM feedback. The experiment across multiple tasks in the MetaWorld benchmark demonstrates the specific contributions of each proposed module in RL-SaLLM-F, and shows that self-augmented LLM feedback can effectively replace the impractical "scripted teacher" feedback. In summary, RL-SaLLM-F introduces a new direction of feedback acquisition in online PbRL that does not rely on any online privileged information, offering an efficient and lightweight solution with LLM-driven feedback.
Abstract:Traditional adversarial attacks typically produce adversarial examples under norm-constrained conditions, whereas unrestricted adversarial examples are free-form with semantically meaningful perturbations. Current unrestricted adversarial impersonation attacks exhibit limited control over adversarial face attributes and often suffer from low transferability. In this paper, we propose a novel Text Controlled Attribute Attack (TCA$^2$) to generate photorealistic adversarial impersonation faces guided by natural language. Specifically, the category-level personal softmax vector is employed to precisely guide the impersonation attacks. Additionally, we propose both data and model augmentation strategies to achieve transferable attacks on unknown target models. Finally, a generative model, \textit{i.e}, Style-GAN, is utilized to synthesize impersonated faces with desired attributes. Extensive experiments on two high-resolution face recognition datasets validate that our TCA$^2$ method can generate natural text-guided adversarial impersonation faces with high transferability. We also evaluate our method on real-world face recognition systems, \textit{i.e}, Face++ and Aliyun, further demonstrating the practical potential of our approach.
Abstract:Cross-modal alignment is crucial for multimodal representation fusion due to the inherent heterogeneity between modalities. While Transformer-based methods have shown promising results in modeling inter-modal relationships, their quadratic computational complexity limits their applicability to long-sequence or large-scale data. Although recent Mamba-based approaches achieve linear complexity, their sequential scanning mechanism poses fundamental challenges in comprehensively modeling cross-modal relationships. To address this limitation, we propose AlignMamba, an efficient and effective method for multimodal fusion. Specifically, grounded in Optimal Transport, we introduce a local cross-modal alignment module that explicitly learns token-level correspondences between different modalities. Moreover, we propose a global cross-modal alignment loss based on Maximum Mean Discrepancy to implicitly enforce the consistency between different modal distributions. Finally, the unimodal representations after local and global alignment are passed to the Mamba backbone for further cross-modal interaction and multimodal fusion. Extensive experiments on complete and incomplete multimodal fusion tasks demonstrate the effectiveness and efficiency of the proposed method.
Abstract:Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.
Abstract:Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.