Abstract:Multimodal large language models (MLLMs) have enabled open-world visual understanding by injecting visual input as extra tokens into large language models (LLMs) as contexts. However, when the visual input changes from a single image to a long video, the above paradigm encounters difficulty because the vast amount of video tokens has significantly exceeded the maximal capacity of MLLMs. Therefore, existing video-based MLLMs are mostly established upon sampling a small portion of tokens from input data, which can cause key information to be lost and thus produce incorrect answers. This paper presents a simple yet effective algorithm named Adaptive Keyframe Sampling (AKS). It inserts a plug-and-play module known as keyframe selection, which aims to maximize the useful information with a fixed number of video tokens. We formulate keyframe selection as an optimization involving (1) the relevance between the keyframes and the prompt, and (2) the coverage of the keyframes over the video, and present an adaptive algorithm to approximate the best solution. Experiments on two long video understanding benchmarks validate that Adaptive Keyframe Sampling improves video QA accuracy (beyond strong baselines) upon selecting informative keyframes. Our study reveals the importance of information pre-filtering in video-based MLLMs. Code is available at https://github.com/ncTimTang/AKS.
Abstract:3D human pose estimation has wide applications in fields such as intelligent surveillance, motion capture, and virtual reality. However, in real-world scenarios, issues such as occlusion, noise interference, and missing viewpoints can severely affect pose estimation. To address these challenges, we introduce the task of Deficiency-Aware 3D Pose Estimation. Traditional 3D pose estimation methods often rely on multi-stage networks and modular combinations, which can lead to cumulative errors and increased training complexity, making them unable to effectively address deficiency-aware estimation. To this end, we propose DeProPose, a flexible method that simplifies the network architecture to reduce training complexity and avoid information loss in multi-stage designs. Additionally, the model innovatively introduces a multi-view feature fusion mechanism based on relative projection error, which effectively utilizes information from multiple viewpoints and dynamically assigns weights, enabling efficient integration and enhanced robustness to overcome deficiency-aware 3D Pose Estimation challenges. Furthermore, to thoroughly evaluate this end-to-end multi-view 3D human pose estimation model and to advance research on occlusion-related challenges, we have developed a novel 3D human pose estimation dataset, termed the Deficiency-Aware 3D Pose Estimation (DA-3DPE) dataset. This dataset encompasses a wide range of deficiency scenarios, including noise interference, missing viewpoints, and occlusion challenges. Compared to state-of-the-art methods, DeProPose not only excels in addressing the deficiency-aware problem but also shows improvement in conventional scenarios, providing a powerful and user-friendly solution for 3D human pose estimation. The source code will be available at https://github.com/WUJINHUAN/DeProPose.
Abstract:Large Language Models (LLMs) have shown impressive reasoning capabilities in well-defined problems with clear solutions, such as mathematics and coding. However, they still struggle with complex real-world scenarios like business negotiations, which require strategic reasoning-an ability to navigate dynamic environments and align long-term goals amidst uncertainty. Existing methods for strategic reasoning face challenges in adaptability, scalability, and transferring strategies to new contexts. To address these issues, we propose explicit policy optimization (EPO) for strategic reasoning, featuring an LLM that provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior. To improve adaptability and policy transferability, we train the strategic reasoning model via multi-turn reinforcement learning (RL) using process rewards and iterative self-play, without supervised fine-tuning (SFT) as a preliminary step. Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment through enhanced strategic reasoning, achieving state-of-the-art performance on social dialogue and web navigation tasks. Our findings reveal various collaborative reasoning mechanisms emergent in EPO and its effectiveness in generating novel strategies, underscoring its potential for strategic reasoning in real-world applications.
Abstract:Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.
Abstract:Single object tracking(SOT) relies on precise object bounding box initialization. In this paper, we reconsidered the deficiencies in the current approaches to initializing single object trackers and propose a new paradigm for single object tracking algorithms, ClickTrack, a new paradigm using clicking interaction for real-time scenarios. Moreover, click as an input type inherently lack hierarchical information. To address ambiguity in certain special scenarios, we designed the Guided Click Refiner(GCR), which accepts point and optional textual information as inputs, transforming the point into the bounding box expected by the operator. The bounding box will be used as input of single object trackers. Experiments on LaSOT and GOT-10k benchmarks show that tracker combined with GCR achieves stable performance in real-time interactive scenarios. Furthermore, we explored the integration of GCR into the Segment Anything model(SAM), significantly reducing ambiguity issues when SAM receives point inputs.
Abstract:Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities. However, their widespread deployment has raised significant safety and reliability concerns. Established vulnerabilities in deep neural networks, coupled with emerging threat models, may compromise security evaluations and create a false sense of security. Given the extensive research in the field of LLM security, we believe that summarizing the current state of affairs will help the research community better understand the present landscape and inform future developments. This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms. We analyze recent studies on attack vectors and model weaknesses, providing insights into attack mechanisms and the evolving threat landscape. We also examine current defense strategies, highlighting their strengths and limitations. By contrasting advancements in attack and defense methodologies, we identify research gaps and propose future directions to enhance LLM security. Our goal is to advance the understanding of LLM safety challenges and guide the development of more robust security measures.
Abstract:Rapid advancements have been made in extending Large Language Models (LLMs) to Large Multi-modal Models (LMMs). However, extending input modality of LLMs to video data remains a challenging endeavor, especially for long videos. Due to insufficient access to large-scale high-quality video data and the excessive compression of visual features, current methods exhibit limitations in effectively processing long videos. In this paper, we introduce Kangaroo, a powerful Video LMM aimed at addressing these challenges. Confronted with issue of inadequate training data, we develop a data curation system to build a large-scale dataset with high-quality annotations for vision-language pre-training and instruction tuning. In addition, we design a curriculum training pipeline with gradually increasing resolution and number of input frames to accommodate long videos. Evaluation results demonstrate that, with 8B parameters, Kangaroo achieves state-of-the-art performance across a variety of video understanding benchmarks while exhibiting competitive results on others. Particularly, on benchmarks specialized for long videos, Kangaroo excels some larger models with over 10B parameters and proprietary models.
Abstract:Depth information provides valuable insights into the 3D structure especially the outline of objects, which can be utilized to improve the semantic segmentation tasks. However, a naive fusion of depth information can disrupt feature and compromise accuracy due to the modality gap between the depth and the vision. In this work, we introduce a Depth-guided Texture Diffusion approach that effectively tackles the outlined challenge. Our method extracts low-level features from edges and textures to create a texture image. This image is then selectively diffused across the depth map, enhancing structural information vital for precisely extracting object outlines. By integrating this enriched depth map with the original RGB image into a joint feature embedding, our method effectively bridges the disparity between the depth map and the image, enabling more accurate semantic segmentation. We conduct comprehensive experiments across diverse, commonly-used datasets spanning a wide range of semantic segmentation tasks, including Camouflaged Object Detection (COD), Salient Object Detection (SOD), and indoor semantic segmentation. With source-free estimated depth or depth captured by depth cameras, our method consistently outperforms existing baselines and achieves new state-of-theart results, demonstrating the effectiveness of our Depth-guided Texture Diffusion for image semantic segmentation.
Abstract:Novel View Synthesis (NVS) without Structure-from-Motion (SfM) pre-processed camera poses--referred to as SfM-free methods--is crucial for promoting rapid response capabilities and enhancing robustness against variable operating conditions. Recent SfM-free methods have integrated pose optimization, designing end-to-end frameworks for joint camera pose estimation and NVS. However, most existing works rely on per-pixel image loss functions, such as L2 loss. In SfM-free methods, inaccurate initial poses lead to misalignment issue, which, under the constraints of per-pixel image loss functions, results in excessive gradients, causing unstable optimization and poor convergence for NVS. In this study, we propose a correspondence-guided SfM-free 3D Gaussian splatting for NVS. We use correspondences between the target and the rendered result to achieve better pixel alignment, facilitating the optimization of relative poses between frames. We then apply the learned poses to optimize the entire scene. Each 2D screen-space pixel is associated with its corresponding 3D Gaussians through approximated surface rendering to facilitate gradient back propagation. Experimental results underline the superior performance and time efficiency of the proposed approach compared to the state-of-the-art baselines.
Abstract:3D Gaussian splatting has demonstrated impressive performance in real-time novel view synthesis. However, achieving successful reconstruction from RGB images generally requires multiple input views captured under static conditions. To address the challenge of sparse input views, previous approaches have incorporated depth supervision into the training of 3D Gaussians to mitigate overfitting, using dense predictions from pretrained depth networks as pseudo-ground truth. Nevertheless, depth predictions from monocular depth estimation models inherently exhibit significant uncertainty in specific areas. Relying solely on pixel-wise L2 loss may inadvertently incorporate detrimental noise from these uncertain areas. In this work, we introduce a novel method to supervise the depth distribution of 3D Gaussians, utilizing depth priors with integrated uncertainty estimates. To address these localized errors in depth predictions, we integrate a patch-wise optimal transport strategy to complement traditional L2 loss in depth supervision. Extensive experiments conducted on the LLFF, DTU, and Blender datasets demonstrate that our approach, UGOT, achieves superior novel view synthesis and consistently outperforms state-of-the-art methods.