Abstract:The application of activity recognition in the ``AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. Activity recognition in classroom surveillance images faces multiple challenges, such as class imbalance and high activity similarity. To address this gap, we constructed a novel multimodal dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition In Classroom). The ARIC dataset has advantages of multiple perspectives, 32 activity categories, three modalities, and real-world classroom scenarios. In addition to the general activity recognition tasks, we also provide settings for continual learning and few-shot continual learning. We hope that the ARIC dataset can act as a facilitator for future analysis and research for open teaching scenarios. You can download preliminary data from https://ivipclab.github.io/publication_ARIC/ARIC.
Abstract:Large Language Models (LLMs) have revolutionized artificial intelligence and machine learning through their advanced text processing and generating capabilities. However, their widespread deployment has raised significant safety and reliability concerns. Established vulnerabilities in deep neural networks, coupled with emerging threat models, may compromise security evaluations and create a false sense of security. Given the extensive research in the field of LLM security, we believe that summarizing the current state of affairs will help the research community better understand the present landscape and inform future developments. This paper reviews current research on LLM vulnerabilities and threats, and evaluates the effectiveness of contemporary defense mechanisms. We analyze recent studies on attack vectors and model weaknesses, providing insights into attack mechanisms and the evolving threat landscape. We also examine current defense strategies, highlighting their strengths and limitations. By contrasting advancements in attack and defense methodologies, we identify research gaps and propose future directions to enhance LLM security. Our goal is to advance the understanding of LLM safety challenges and guide the development of more robust security measures.
Abstract:Recent work on image content manipulation based on vision-language pre-training models has been effectively extended to text-driven 3D scene editing. However, existing schemes for 3D scene editing still exhibit certain shortcomings, hindering their further interactive design. Such schemes typically adhere to fixed input patterns, limiting users' flexibility in text input. Moreover, their editing capabilities are constrained by a single or a few 2D visual models and require intricate pipeline design to integrate these models into 3D reconstruction processes. To address the aforementioned issues, we propose a dialogue-based 3D scene editing approach, termed CE3D, which is centered around a large language model that allows for arbitrary textual input from users and interprets their intentions, subsequently facilitating the autonomous invocation of the corresponding visual expert models. Furthermore, we design a scheme utilizing Hash-Atlas to represent 3D scene views, which transfers the editing of 3D scenes onto 2D atlas images. This design achieves complete decoupling between the 2D editing and 3D reconstruction processes, enabling CE3D to flexibly integrate a wide range of existing 2D or 3D visual models without necessitating intricate fusion designs. Experimental results demonstrate that CE3D effectively integrates multiple visual models to achieve diverse editing visual effects, possessing strong scene comprehension and multi-round dialog capabilities. The code is available at https://sk-fun.fun/CE3D.
Abstract:Video prediction, a fundamental task in computer vision, aims to enable models to generate sequences of future frames based on existing video content. This task has garnered widespread application across various domains. In this paper, we comprehensively survey both historical and contemporary works in this field, encompassing the most widely used datasets and algorithms. Our survey scrutinizes the challenges and evolving landscape of video prediction within the realm of computer vision. We propose a novel taxonomy centered on the stochastic nature of video prediction algorithms. This taxonomy accentuates the gradual transition from deterministic to generative prediction methodologies, underlining significant advancements and shifts in approach.
Abstract:The Space-Time Video Super-Resolution (STVSR) task aims to enhance the visual quality of videos, by simultaneously performing video frame interpolation (VFI) and video super-resolution (VSR). However, facing the challenge of the additional temporal dimension and scale inconsistency, most existing STVSR methods are complex and inflexible in dynamically modeling different motion amplitudes. In this work, we find that choosing an appropriate processing scale achieves remarkable benefits in flow-based feature propagation. We propose a novel Scale-Adaptive Feature Aggregation (SAFA) network that adaptively selects sub-networks with different processing scales for individual samples. Experiments on four public STVSR benchmarks demonstrate that SAFA achieves state-of-the-art performance. Our SAFA network outperforms recent state-of-the-art methods such as TMNet and VideoINR by an average improvement of over 0.5dB on PSNR, while requiring less than half the number of parameters and only 1/3 computational costs.
Abstract:Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at http://sk-fun.fun/DN2N
Abstract:Image matching is a fundamental and critical task in various visual applications, such as Simultaneous Localization and Mapping (SLAM) and image retrieval, which require accurate pose estimation. However, most existing methods ignore the occlusion relations between objects caused by camera motion and scene structure. In this paper, we propose Occ$^2$Net, a novel image matching method that models occlusion relations using 3D occupancy and infers matching points in occluded regions. Thanks to the inductive bias encoded in the Occupancy Estimation (OE) module, it greatly simplifies bootstrapping of a multi-view consistent 3D representation that can then integrate information from multiple views. Together with an Occlusion-Aware (OA) module, it incorporates attention layers and rotation alignment to enable matching between occluded and visible points. We evaluate our method on both real-world and simulated datasets and demonstrate its superior performance over state-of-the-art methods on several metrics, especially in occlusion scenarios.
Abstract:The Reinforcement Learning from Human Feedback (RLHF) plays a pivotal role in shaping the impact of large language models (LLMs), contributing significantly to controlling output toxicity and selecting output styles, particularly as LLMs often harbor misleading content, highlighting the urgency to align them with human values for secure AI systems. The RLHF, characterized by complexity, instability, and sensitivity to hyperparameters, makes the evaluation of the reward model for complex tasks challenging, thereby further complicating the use of Proximal Policy Optimization (PPO). In this paper, we introduce a simple task designed to employ Gloden as a reward model that validates the effectiveness of PPO and inspires it, primarily explaining the task of utilizing PPO to manipulate the tokenizer length of the output generated by the model. Experiments confirm that PPO is not only effective in manipulating the output tokenizer length to a certain extent in this type of task but also exhibits facilitated training once the influence of the reward model effect is excluded, making it an exciting development.
Abstract:Neural Radiance Fields (NeRF) have been widely adopted as practical and versatile representations for 3D scenes, facilitating various downstream tasks. However, different architectures, including plain Multi-Layer Perceptron (MLP), Tensors, low-rank Tensors, Hashtables, and their compositions, have their trade-offs. For instance, Hashtables-based representations allow for faster rendering but lack clear geometric meaning, making spatial-relation-aware editing challenging. To address this limitation and maximize the potential of each architecture, we propose Progressive Volume Distillation with Active Learning (PVD-AL), a systematic distillation method that enables any-to-any conversions between different architectures. PVD-AL decomposes each structure into two parts and progressively performs distillation from shallower to deeper volume representation, leveraging effective information retrieved from the rendering process. Additionally, a Three-Levels of active learning technique provides continuous feedback during the distillation process, resulting in high-performance results. Empirical evidence is presented to validate our method on multiple benchmark datasets. For example, PVD-AL can distill an MLP-based model from a Hashtables-based model at a 10~20X faster speed and 0.8dB~2dB higher PSNR than training the NeRF model from scratch. Moreover, PVD-AL permits the fusion of diverse features among distinct structures, enabling models with multiple editing properties and providing a more efficient model to meet real-time requirements. Project website:http://sk-fun.fun/PVD-AL.
Abstract:In the field of 3D object detection for autonomous driving, the sensor portfolio including multi-modality and single-modality is diverse and complex. Since the multi-modal methods have system complexity while the accuracy of single-modal ones is relatively low, how to make a tradeoff between them is difficult. In this work, we propose a universal cross-modality knowledge distillation framework (UniDistill) to improve the performance of single-modality detectors. Specifically, during training, UniDistill projects the features of both the teacher and the student detector into Bird's-Eye-View (BEV), which is a friendly representation for different modalities. Then, three distillation losses are calculated to sparsely align the foreground features, helping the student learn from the teacher without introducing additional cost during inference. Taking advantage of the similar detection paradigm of different detectors in BEV, UniDistill easily supports LiDAR-to-camera, camera-to-LiDAR, fusion-to-LiDAR and fusion-to-camera distillation paths. Furthermore, the three distillation losses can filter the effect of misaligned background information and balance between objects of different sizes, improving the distillation effectiveness. Extensive experiments on nuScenes demonstrate that UniDistill effectively improves the mAP and NDS of student detectors by 2.0%~3.2%.