Abstract:GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Abstract:The application of activity recognition in the ``AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. Activity recognition in classroom surveillance images faces multiple challenges, such as class imbalance and high activity similarity. To address this gap, we constructed a novel multimodal dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition In Classroom). The ARIC dataset has advantages of multiple perspectives, 32 activity categories, three modalities, and real-world classroom scenarios. In addition to the general activity recognition tasks, we also provide settings for continual learning and few-shot continual learning. We hope that the ARIC dataset can act as a facilitator for future analysis and research for open teaching scenarios. You can download preliminary data from https://ivipclab.github.io/publication_ARIC/ARIC.
Abstract:The application of activity recognition in the "AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. In real classroom settings, normal teaching activities such as reading, account for a large proportion of samples, while rare non-teaching activities such as eating, continue to appear. This requires a model that can learn non-teaching activities from few samples without forgetting the normal teaching activities, which necessitates fewshot continual learning (FSCL) capability. To address this gap, we constructed a continual learning dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition in Classroom). The dataset has advantages such as multiple perspectives, a wide variety of activities, and real-world scenarios, but it also presents challenges like similar activities and imbalanced sample distribution. To overcome these challenges, we designed a few-shot continual learning method that combines supervised contrastive learning (SCL) and an adaptive covariance classifier (ACC). During the base phase, we proposed a SCL approach based on feature augmentation to enhance the model's generalization ability. In the incremental phase, we employed an ACC to more accurately describe the distribution of new classes. Experimental results demonstrate that our method outperforms other existing methods on the ARIC dataset.