Abstract:Reward-guided text generation (RGTG) has emerged as a viable alternative to offline reinforcement learning from human feedback (RLHF). RGTG methods can align baseline language models to human preferences without further training like in standard RLHF methods. However, they rely on a reward model to score each candidate token generated by the language model at inference, incurring significant test-time overhead. Additionally, the reward model is usually only trained to score full sequences, which can lead to sub-optimal choices for partial sequences. In this work, we present a novel reward model architecture that is trained, using a Bradley-Terry loss, to prefer the optimal expansion of a sequence with just a \emph{single call} to the reward model at each step of the generation process. That is, a score for all possible candidate tokens is generated simultaneously, leading to efficient inference. We theoretically analyze various RGTG reward models and demonstrate that prior techniques prefer sub-optimal sequences compared to our method during inference. Empirically, our reward model leads to significantly faster inference than other RGTG methods. It requires fewer calls to the reward model and performs competitively compared to previous RGTG and offline RLHF methods.
Abstract:When interacting with the real world, human often take the egocentric (first-person) view as a benchmark, naturally transferring behaviors observed from a exocentric (third-person) view to their own. This cognitive theory provides a foundation for researching how robots can more effectively imitate human behavior. However, current research either employs multiple cameras with different views focusing on the same individual's behavior simultaneously or encounters unpair ego-exo view scenarios, there is no effort to fully exploit human cognitive behavior in the real world. To fill this gap, in this paper, we introduce a novel large-scale egocentric dataset, called EgoMe, which towards following the process of human imitation learning via egocentric view in the real world. Our dataset includes 7902 pairs of videos (15804 videos) for diverse daily behaviors in real-world scenarios. For a pair of videos, one video captures a exocentric view of the imitator observing the demonstrator's actions, while the other captures a egocentric view of the imitator subsequently following those actions. Notably, our dataset also contain exo-ego eye gaze, angular velocity, acceleration, magnetic strength and other sensor multi-modal data for assisting in establishing correlations between observing and following process. In addition, we also propose eight challenging benchmark tasks for fully leveraging this data resource and promoting the research of robot imitation learning ability. Extensive statistical analysis demonstrates significant advantages compared to existing datasets. The proposed EgoMe dataset and benchmark will be released soon.
Abstract:Multimodal Large Language Models (MLLMs) are typically based on decoder-only or cross-attention architectures. While decoder-only MLLMs outperform their cross-attention counterparts, they require significantly higher computational resources due to extensive self-attention and FFN operations on visual tokens. This raises the question: can we eliminate these expensive operations while maintaining the performance? To this end, we present a novel analysis framework to investigate the necessity of these costly operations in decoder-only MLLMs. Our framework introduces two key innovations: (1) Hollow Attention, which limits visual token interactions to local attention while maintaining visual-text associations, and (2) Probe-Activated Dynamic FFN, which selectively activates FFN parameters for visual tokens. Both methods do not require fine-tuning, which significantly enhances analysis efficiency. To assess the impact of applying these reductions across different proportions of layers, we developed a greedy search method that significantly narrows the search space. Experiments on state-of-the-art MLLMs reveal that applying our reductions to approximately half of the layers not only maintains but sometimes improves model performance, indicating significant computational redundancy in current architectures. Additionally, our method is orthogonal to existing token compression techniques, allowing for further combination to achieve greater computational reduction. Our findings may provide valuable insights for the design of more efficient future MLLMs. Our code will be publicly available at https://github.com/L-Hugh/Beyond-Token-Compression.
Abstract:Owing to large-scale image-text contrastive training, pre-trained vision language model (VLM) like CLIP shows superior open-vocabulary recognition ability. Most existing open-vocabulary object detectors attempt to utilize the pre-trained VLM to attain generative representation. F-ViT uses the pre-trained visual encoder as the backbone network and freezes it during training. However, the frozen backbone doesn't benefit from the labeled data to strengthen the representation. Therefore, we propose a novel two-branch backbone network design, named as ViT-Feature-Modulated Multi-Scale Convolutional network (VMCNet). VMCNet consists of a trainable convolutional branch, a frozen pre-trained ViT branch and a feature modulation module. The trainable CNN branch could be optimized with labeled data while the frozen pre-trained ViT branch could keep the representation ability derived from large-scale pre-training. Then, the proposed feature modulation module could modulate the multi-scale CNN features with the representations from ViT branch. With the proposed mixed structure, detector is more likely to discover novel categories. Evaluated on two popular benchmarks, our method boosts the detection performance on novel category and outperforms the baseline. On OV-COCO, the proposed method achieves 44.3 AP$_{50}^{\mathrm{novel}}$ with ViT-B/16 and 48.5 AP$_{50}^{\mathrm{novel}}$ with ViT-L/14. On OV-LVIS, VMCNet with ViT-B/16 and ViT-L/14 reaches 27.8 and 38.4 mAP$_{r}$.
Abstract:The rapid development of large climate models has created the requirement of storing and transferring massive atmospheric data worldwide. Therefore, data compression is essential for meteorological research, but an efficient compression scheme capable of keeping high accuracy with high compressibility is still lacking. As an emerging technique, Implicit Neural Representation (INR) has recently acquired impressive momentum and demonstrates high promise for compressing diverse natural data. However, the INR-based compression encounters a bottleneck due to the sophisticated spatio-temporal properties and variability. To address this issue, we propose Hierarchical Harmonic decomposition implicit neural compression (HiHa) for atmospheric data. HiHa firstly segments the data into multi-frequency signals through decomposition of multiple complex harmonic, and then tackles each harmonic respectively with a frequency-based hierarchical compression module consisting of sparse storage, multi-scale INR and iterative decomposition sub-modules. We additionally design a temporal residual compression module to accelerate compression by utilizing temporal continuity. Experiments depict that HiHa outperforms both mainstream compressors and other INR-based methods in both compression fidelity and capabilities, and also demonstrate that using compressed data in existing data-driven models can achieve the same accuracy as raw data.
Abstract:The application of activity recognition in the ``AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. Activity recognition in classroom surveillance images faces multiple challenges, such as class imbalance and high activity similarity. To address this gap, we constructed a novel multimodal dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition In Classroom). The ARIC dataset has advantages of multiple perspectives, 32 activity categories, three modalities, and real-world classroom scenarios. In addition to the general activity recognition tasks, we also provide settings for continual learning and few-shot continual learning. We hope that the ARIC dataset can act as a facilitator for future analysis and research for open teaching scenarios. You can download preliminary data from https://ivipclab.github.io/publication_ARIC/ARIC.
Abstract:In this paper, we explore a novel Text-supervised Egocentic Semantic Segmentation (TESS) task that aims to assign pixel-level categories to egocentric images weakly supervised by texts from image-level labels. In this task with prospective potential, the egocentric scenes contain dense wearer-object relations and inter-object interference. However, most recent third-view methods leverage the frozen Contrastive Language-Image Pre-training (CLIP) model, which is pre-trained on the semantic-oriented third-view data and lapses in the egocentric view due to the ``relation insensitive" problem. Hence, we propose a Cognition Transferring and Decoupling Network (CTDN) that first learns the egocentric wearer-object relations via correlating the image and text. Besides, a Cognition Transferring Module (CTM) is developed to distill the cognitive knowledge from the large-scale pre-trained model to our model for recognizing egocentric objects with various semantics. Based on the transferred cognition, the Foreground-background Decoupling Module (FDM) disentangles the visual representations to explicitly discriminate the foreground and background regions to mitigate false activation areas caused by foreground-background interferential objects during egocentric relation learning. Extensive experiments on four TESS benchmarks demonstrate the effectiveness of our approach, which outperforms many recent related methods by a large margin. Code will be available at https://github.com/ZhaofengSHI/CTDN.
Abstract:The application of activity recognition in the "AI + Education" field is gaining increasing attention. However, current work mainly focuses on the recognition of activities in manually captured videos and a limited number of activity types, with little attention given to recognizing activities in surveillance images from real classrooms. In real classroom settings, normal teaching activities such as reading, account for a large proportion of samples, while rare non-teaching activities such as eating, continue to appear. This requires a model that can learn non-teaching activities from few samples without forgetting the normal teaching activities, which necessitates fewshot continual learning (FSCL) capability. To address this gap, we constructed a continual learning dataset focused on classroom surveillance image activity recognition called ARIC (Activity Recognition in Classroom). The dataset has advantages such as multiple perspectives, a wide variety of activities, and real-world scenarios, but it also presents challenges like similar activities and imbalanced sample distribution. To overcome these challenges, we designed a few-shot continual learning method that combines supervised contrastive learning (SCL) and an adaptive covariance classifier (ACC). During the base phase, we proposed a SCL approach based on feature augmentation to enhance the model's generalization ability. In the incremental phase, we employed an ACC to more accurately describe the distribution of new classes. Experimental results demonstrate that our method outperforms other existing methods on the ARIC dataset.
Abstract:Text-rich document understanding (TDU) refers to analyzing and comprehending documents containing substantial textual content. With the rapid evolution of large language models (LLMs), they have been widely leveraged for TDU due to their remarkable versatility and generalization. In this paper, we introduce DocLayLLM, an efficient and effective multi-modal extension of LLMs specifically designed for TDU. By integrating visual patch tokens and 2D positional tokens into LLMs and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of the chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM surpasses existing OCR-dependent methods and also outperforms OCR-free competitors.
Abstract:Continual Learning (CL) aims to enable Deep Neural Networks (DNNs) to learn new data without forgetting previously learned knowledge. The key to achieving this goal is to avoid confusion at the feature level, i.e., avoiding confusion within old tasks and between new and old tasks. Previous prototype-based CL methods generate pseudo features for old knowledge replay by adding Gaussian noise to the centroids of old classes. However, the distribution in the feature space exhibits anisotropy during the incremental process, which prevents the pseudo features from faithfully reproducing the distribution of old knowledge in the feature space, leading to confusion in classification boundaries within old tasks. To address this issue, we propose the Distribution-Level Memory Recall (DMR) method, which uses a Gaussian mixture model to precisely fit the feature distribution of old knowledge at the distribution level and generate pseudo features in the next stage. Furthermore, resistance to confusion at the distribution level is also crucial for multimodal learning, as the problem of multimodal imbalance results in significant differences in feature responses between different modalities, exacerbating confusion within old tasks in prototype-based CL methods. Therefore, we mitigate the multi-modal imbalance problem by using the Inter-modal Guidance and Intra-modal Mining (IGIM) method to guide weaker modalities with prior information from dominant modalities and further explore useful information within modalities. For the second key, We propose the Confusion Index to quantitatively describe a model's ability to distinguish between new and old tasks, and we use the Incremental Mixup Feature Enhancement (IMFE) method to enhance pseudo features with new sample features, alleviating classification confusion between new and old knowledge.