Abstract:Depth completion using lightweight time-of-flight (ToF) depth sensors is attractive due to their low cost. However, lightweight ToF sensors usually have a limited field of view (FOV) compared with cameras. Thus, only pixels in the zone area of the image can be associated with depth signals. Previous methods fail to propagate depth features from the zone area to the outside-zone area effectively, thus suffering from degraded depth completion performance outside the zone. To this end, this paper proposes the CFPNet to achieve cross-zone feature propagation from the zone area to the outside-zone area with two novel modules. The first is a direct-attention-based propagation module (DAPM), which enforces direct cross-zone feature acquisition. The second is a large-kernel-based propagation module (LKPM), which realizes cross-zone feature propagation by utilizing convolution layers with kernel sizes up to 31. CFPNet achieves state-of-the-art (SOTA) depth completion performance by combining these two modules properly, as verified by extensive experimental results on the ZJU-L5 dataset. The code will be made public.
Abstract:Document content analysis has been a crucial research area in computer vision. Despite significant advancements in methods such as OCR, layout detection, and formula recognition, existing open-source solutions struggle to consistently deliver high-quality content extraction due to the diversity in document types and content. To address these challenges, we present MinerU, an open-source solution for high-precision document content extraction. MinerU leverages the sophisticated PDF-Extract-Kit models to extract content from diverse documents effectively and employs finely-tuned preprocessing and postprocessing rules to ensure the accuracy of the final results. Experimental results demonstrate that MinerU consistently achieves high performance across various document types, significantly enhancing the quality and consistency of content extraction. The MinerU open-source project is available at https://github.com/opendatalab/MinerU.
Abstract:Pre-training language models followed by fine-tuning on specific tasks is standard in NLP, but traditional models often underperform when applied to the medical domain, leading to the development of specialized medical pre-trained language models (Med-PLMs). These models are valuable assets but are vulnerable to misuse and theft, requiring copyright protection. However, no existing watermarking methods are tailored for Med-PLMs, and adapting general PLMs watermarking techniques to the medical domain faces challenges such as task incompatibility, loss of fidelity, and inefficiency. To address these issues, we propose the first training-free backdoor watermarking method for Med-PLMs. Our method uses rare special symbols as trigger words, which do not impact downstream task performance, embedding watermarks by replacing their original embeddings with those of specific medical terms in the Med-PLMs' word embeddings layer. After fine-tuning the watermarked Med-PLMs on various medical downstream tasks, the final models (FMs) respond to the trigger words in the same way they would to the corresponding medical terms. This property can be utilized to extract the watermark. Experiments demonstrate that our method achieves high fidelity while effectively extracting watermarks across various medical downstream tasks. Additionally, our method demonstrates robustness against various attacks and significantly enhances the efficiency of watermark embedding, reducing the embedding time from 10 hours to 10 seconds.
Abstract:Large language models (LLMs) are highly capable but face latency challenges in real-time applications, such as conducting online hallucination detection. To overcome this issue, we propose a novel framework that leverages a small language model (SLM) classifier for initial detection, followed by a LLM as constrained reasoner to generate detailed explanations for detected hallucinated content. This study optimizes the real-time interpretable hallucination detection by introducing effective prompting techniques that align LLM-generated explanations with SLM decisions. Empirical experiment results demonstrate its effectiveness, thereby enhancing the overall user experience.
Abstract:Pathological diagnosis remains the definitive standard for identifying tumors. The rise of multimodal large models has simplified the process of integrating image analysis with textual descriptions. Despite this advancement, the substantial costs associated with training and deploying these complex multimodal models, together with a scarcity of high-quality training datasets, create a significant divide between cutting-edge technology and its application in the clinical setting. We had meticulously compiled a dataset of approximately 45,000 cases, covering over 6 different tasks, including the classification of organ tissues, generating pathology report descriptions, and addressing pathology-related questions and answers. We have fine-tuned multimodal large models, specifically LLaVA, Qwen-VL, InternLM, with this dataset to enhance instruction-based performance. We conducted a qualitative assessment of the capabilities of the base model and the fine-tuned model in performing image captioning and classification tasks on the specific dataset. The evaluation results demonstrate that the fine-tuned model exhibits proficiency in addressing typical pathological questions. We hope that by making both our models and datasets publicly available, they can be valuable to the medical and research communities.
Abstract:We propose a novel framework for retinal feature point alignment, designed for learning cross-modality features to enhance matching and registration across multi-modality retinal images. Our model draws on the success of previous learning-based feature detection and description methods. To better leverage unlabeled data and constrain the model to reproduce relevant keypoints, we integrate a keypoint-based segmentation task. It is trained in a self-supervised manner by enforcing segmentation consistency between different augmentations of the same image. By incorporating a keypoint augmented self-supervised layer, we achieve robust feature extraction across modalities. Extensive evaluation on two public datasets and one in-house dataset demonstrates significant improvements in performance for modality-agnostic retinal feature alignment. Our code and model weights are publicly available at \url{https://github.com/MedICL-VU/RetinaIPA}.
Abstract:Large language models~(LLMs) have demonstrated impressive performance in various applications, among which role-playing language agents (RPLAs) have engaged a broad user base. Now, there is a growing demand for RPLAs that represent Key Opinion Leaders (KOLs), \ie, Internet celebrities who shape the trends and opinions in their domains. However, research in this line remains underexplored. In this paper, we hence introduce MINDECHO, a comprehensive framework for the development and evaluation of KOL RPLAs. MINDECHO collects KOL data from Internet video transcripts in various professional fields, and synthesizes their conversations leveraging GPT-4. Then, the conversations and the transcripts are used for individualized model training and inference-time retrieval, respectively. Our evaluation covers both general dimensions (\ie, knowledge and tones) and fan-centric dimensions for KOLs. Extensive experiments validate the effectiveness of MINDECHO in developing and evaluating KOL RPLAs.
Abstract:Role-playing agents (RPA) have been a popular application area for large language models (LLMs), attracting significant interest from both industry and academia.While existing RPAs well portray the characters' knowledge and tones, they face challenges in capturing their minds, especially for small role-playing language models (RPLMs). In this paper, we propose to enhance RPLMs via personality-indicative data. Specifically, we leverage questions from psychological scales and distill advanced RPAs to generate dialogues that grasp the minds of characters. Experimental results validate that RPLMs trained with our dataset exhibit advanced role-playing capabilities for both general and personality-related evaluations. Code and data are available at \href{https://github.com/alienet1109/RolePersonality}{this URL}.
Abstract:Recent advances in Multi-Object Tracking (MOT) have achieved remarkable success in short-term association within the decoupled tracking-by-detection online paradigm. However, long-term tracking still remains a challenging task. Although graph-based approaches can address this issue by modeling trajectories as a graph in the decoupled manner, their non-online nature poses obstacles for real-time applications. In this paper, we demonstrate that the trajectory graph is a directed acyclic graph, which can be represented by an object sequence arranged by frame and a binary adjacency matrix. It is a coincidence that the binary matrix matches the attention mask in the Transformer, and the object sequence serves exactly as a natural input sequence. Intuitively, we propose that a pure Transformer can naturally unify short- and long-term associations in a decoupled and online manner. Our experiments show that a classic Transformer architecture naturally suits the association problem and achieves a strong baseline compared to existing foundational methods across four datasets: DanceTrack, SportsMOT, MOT17, and MOT20, as well as superior generalizability in domain shift. Moreover, the decoupled property also enables efficient training and inference. This work pioneers a promising Transformer-based approach for the MOT task, and provides code to facilitate further research. https://github.com/chongweiliu/PuTR
Abstract:In this paper, we study an under-explored but important factor of diffusion generative models, i.e., the combinatorial complexity. Data samples are generally high-dimensional, and for various structured generation tasks, there are additional attributes which are combined to associate with data samples. We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models, causing degraded test time performance. We present a simple fix to this problem by constructing stochastic processes that fully exploit the combinatorial structures, hence the name ComboStoc. Using this simple strategy, we show that network training is significantly accelerated across diverse data modalities, including images and 3D structured shapes. Moreover, ComboStoc enables a new way of test time generation which uses insynchronized time steps for different dimensions and attributes, thus allowing for varying degrees of control over them.