INF Technology
Abstract:Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder caused by upper airway blockage, leading to oxygen deprivation and disrupted sleep. Traditional diagnosis using polysomnography (PSG) is expensive, time-consuming, and uncomfortable. Existing deep learning methods using facial image analysis lack accuracy due to poor facial feature capture and limited sample sizes. To address this, we propose a multimodal dual encoder model that integrates visual and language inputs for automated OSAHS diagnosis. The model balances data using randomOverSampler, extracts key facial features with attention grids, and converts physiological data into meaningful text. Cross-attention combines image and text data for better feature extraction, and ordered regression loss ensures stable learning. Our approach improves diagnostic efficiency and accuracy, achieving 91.3% top-1 accuracy in a four-class severity classification task, demonstrating state-of-the-art performance. Code will be released upon acceptance.
Abstract:The uncertainty inherent in the environmental transition model of Reinforcement Learning (RL) necessitates a careful balance between exploration and exploitation to optimize the use of computational resources for accurately estimating an agent's expected reward. Achieving balance in control systems is particularly challenging in scenarios with sparse rewards. However, given the extensive prior knowledge available for many environments, it is redundant to begin learning from scratch in such settings. To address this, we introduce \textbf{L}anguage \textbf{M}odel \textbf{G}uided \textbf{T}rade-offs (i.e., \textbf{LMGT}), a novel, sample-efficient framework that leverages the comprehensive prior knowledge embedded in Large Language Models (LLMs) and their adeptness at processing non-standard data forms, such as wiki tutorials. LMGT proficiently manages the exploration-exploitation trade-off by employing reward shifts guided by LLMs, which direct agents' exploration endeavors, thereby improving sample efficiency. We have thoroughly tested LMGT across various RL tasks and deployed it in industrial-grade RL recommendation systems, where it consistently outperforms baseline methods. The results indicate that our framework can significantly reduce the time cost required during the training phase in RL.
Abstract:Cognitive psychology investigates perception, attention, memory, language, problem-solving, decision-making, and reasoning. Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2. Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks. Nonetheless, the presence of a dual-system framework analogous to human cognition in LLMs remains unexplored. This study introduces the \textbf{CogniDual Framework for LLMs} (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses, thereby emulating the human process of acquiring and mastering new information. Our findings reveal the cognitive mechanisms behind LLMs' response generation, enhancing our understanding of their capabilities in cognitive psychology. Practically, self-trained models can provide faster responses to certain queries, reducing computational demands during inference.
Abstract:Large language models (LLMs) are trained on extensive text corpora, which inevitably include biased information. Although techniques such as Affective Alignment can mitigate some negative impacts of these biases, existing prompt-based attack methods can still extract these biases from the model's weights. Moreover, these biases frequently appear subtly when LLMs are prompted to perform identical tasks across different demographic groups, thereby camouflaging their presence. To address this issue, we have formally defined the implicit bias problem and developed an innovative framework for bias removal based on Bayesian theory, Bayesian-Theory based Bias Removal (BTBR). BTBR employs likelihood ratio screening to pinpoint data entries within publicly accessible biased datasets that represent biases inadvertently incorporated during the LLM training phase. It then automatically constructs relevant knowledge triples and expunges bias information from LLMs using model editing techniques. Through extensive experimentation, we have confirmed the presence of the implicit bias problem in LLMs and demonstrated the effectiveness of our BTBR approach.
Abstract:Integrating deep neural networks with the Hawkes process has significantly improved predictive capabilities in finance, health informatics, and information technology. Nevertheless, these models often face challenges in real-world settings, particularly due to substantial label noise. This issue is of significant concern in the medical field, where label noise can arise from delayed updates in electronic medical records or misdiagnoses, leading to increased prediction risks. Our research indicates that deep Hawkes process models exhibit reduced robustness when dealing with label noise, particularly when it affects both event types and timing. To address these challenges, we first investigate the influence of label noise in approximated intensity functions and present a novel framework, the Robust Deep Hawkes Process (RDHP), to overcome the impact of label noise on the intensity function of Hawkes models, considering both the events and their occurrences. We tested RDHP using multiple open-source benchmarks with synthetic noise and conducted a case study on obstructive sleep apnea-hypopnea syndrome (OSAHS) in a real-world setting with inherent label noise. The results demonstrate that RDHP can effectively perform classification and regression tasks, even in the presence of noise related to events and their timing. To the best of our knowledge, this is the first study to successfully address both event and time label noise in deep Hawkes process models, offering a promising solution for medical applications, specifically in diagnosing OSAHS.
Abstract:Large language models (LLMs) have shown exceptional performance as general-purpose assistants, excelling across a variety of reasoning tasks. This achievement represents a significant step toward achieving artificial general intelligence (AGI). Despite these advancements, the effectiveness of LLMs often hinges on the specific prompting strategies employed, and there remains a lack of a robust framework to facilitate learning and generalization across diverse reasoning tasks. To address these challenges, we introduce a novel learning framework, THOUGHT-LIKE-PRO In this framework, we utilize imitation learning to imitate the Chain-of-Thought (CoT) process which is verified and translated from reasoning trajectories generated by a symbolic Prolog logic engine. This framework proceeds in a self-driven manner, that enables LLMs to formulate rules and statements from given instructions and leverage the symbolic Prolog engine to derive results. Subsequently, LLMs convert Prolog-derived successive reasoning trajectories into natural language CoT for imitation learning. Our empirical findings indicate that our proposed approach substantially enhances the reasoning abilities of LLMs and demonstrates robust generalization across out-of-distribution reasoning tasks.
Abstract:Structured data, rich in logical and relational information, has the potential to enhance the reasoning abilities of large language models (LLMs). Still, its integration poses a challenge due to the risk of overwhelming LLMs with excessive tokens and irrelevant context information. To address this, we propose Struct-X, a novel framework that operates through five key phases: ``read-model-fill-reflect-reason'' efficiently enabling LLMs to utilize structured data. It begins by encoding structured data into a topological space using graph embeddings, followed by filling in missing entity information with knowledge retrieval modules, and filtering out irrelevant tokens via a self-supervised module. The final phase involves constructing a topological network with selected tokens to further reduce the total token length for more effective LLM inference. Additionally, Struct-X includes an Auxiliary Module trained to generate prompts, aiding LLMs in analyzing structured data. Extensive experiments on benchmarks, including the knowledge graph question-answer task and the long document reading comprehension task, show that Struct-X notably improves LLM reasoning, demonstrating the effectiveness of structured data augmentation in improving LLM inference with complex input context.
Abstract:Large language models~(LLMs) have demonstrated impressive performance in various applications, among which role-playing language agents (RPLAs) have engaged a broad user base. Now, there is a growing demand for RPLAs that represent Key Opinion Leaders (KOLs), \ie, Internet celebrities who shape the trends and opinions in their domains. However, research in this line remains underexplored. In this paper, we hence introduce MINDECHO, a comprehensive framework for the development and evaluation of KOL RPLAs. MINDECHO collects KOL data from Internet video transcripts in various professional fields, and synthesizes their conversations leveraging GPT-4. Then, the conversations and the transcripts are used for individualized model training and inference-time retrieval, respectively. Our evaluation covers both general dimensions (\ie, knowledge and tones) and fan-centric dimensions for KOLs. Extensive experiments validate the effectiveness of MINDECHO in developing and evaluating KOL RPLAs.
Abstract:Effective coordination is crucial for motion control with reinforcement learning, especially as the complexity of agents and their motions increases. However, many existing methods struggle to account for the intricate dependencies between joints. We introduce CoordiGraph, a novel architecture that leverages subequivariant principles from physics to enhance coordination of motion control with reinforcement learning. This method embeds the principles of equivariance as inherent patterns in the learning process under gravity influence, which aids in modeling the nuanced relationships between joints vital for motion control. Through extensive experimentation with sophisticated agents in diverse environments, we highlight the merits of our approach. Compared to current leading methods, CoordiGraph notably enhances generalization and sample efficiency.
Abstract:Instruction fine-tuning has conventionally been employed to adapt Large Language Models (LLMs) to a variety of tasks. Nonetheless, this technique often necessitates substantial computational resources, making it impractical for deployment by individuals or small-scale entities. Recently, Low-Rank Adaptation (LoRA) has become a promising alternative, offering high capabilities on par with full tuning with reduced resource overhead. However, attaining satisfactory performance through the fine-tuning of LoRA is a non-trivial challenge. In this paper, we propose PILLOW, which aims to improve LoRA's performance by a discrimination-based prompting method, leveraging LLMs' In-Context Learning ability. PILLOW incorporates a matching network that selects prompts from a user-defined prompt pool, concatenates the selected prompts with the user instruction as input, and performs inference using the LoRA-fine-tuned LLMs. Trained with Reinforcement Learning, PILLOW exhibits commensurate performance on various evaluation metrics compared with typical instruction fine-tuning methods, utilizing only consumer-grade GPU resources and exhibiting a large reduction in computational costs.