Abstract:Integrating deep neural networks with the Hawkes process has significantly improved predictive capabilities in finance, health informatics, and information technology. Nevertheless, these models often face challenges in real-world settings, particularly due to substantial label noise. This issue is of significant concern in the medical field, where label noise can arise from delayed updates in electronic medical records or misdiagnoses, leading to increased prediction risks. Our research indicates that deep Hawkes process models exhibit reduced robustness when dealing with label noise, particularly when it affects both event types and timing. To address these challenges, we first investigate the influence of label noise in approximated intensity functions and present a novel framework, the Robust Deep Hawkes Process (RDHP), to overcome the impact of label noise on the intensity function of Hawkes models, considering both the events and their occurrences. We tested RDHP using multiple open-source benchmarks with synthetic noise and conducted a case study on obstructive sleep apnea-hypopnea syndrome (OSAHS) in a real-world setting with inherent label noise. The results demonstrate that RDHP can effectively perform classification and regression tasks, even in the presence of noise related to events and their timing. To the best of our knowledge, this is the first study to successfully address both event and time label noise in deep Hawkes process models, offering a promising solution for medical applications, specifically in diagnosing OSAHS.
Abstract:Numerous roadside perception datasets have been introduced to propel advancements in autonomous driving and intelligent transportation systems research and development. However, it has been observed that the majority of their concentrates is on urban arterial roads, inadvertently overlooking residential areas such as parks and campuses that exhibit entirely distinct characteristics. In light of this gap, we propose CORP, which stands as the first public benchmark dataset tailored for multi-modal roadside perception tasks under campus scenarios. Collected in a university campus, CORP consists of over 205k images plus 102k point clouds captured from 18 cameras and 9 LiDAR sensors. These sensors with different configurations are mounted on roadside utility poles to provide diverse viewpoints within the campus region. The annotations of CORP encompass multi-dimensional information beyond 2D and 3D bounding boxes, providing extra support for 3D seamless tracking and instance segmentation with unique IDs and pixel masks for identifying targets, to enhance the understanding of objects and their behaviors distributed across the campus premises. Unlike other roadside datasets about urban traffic, CORP extends the spectrum to highlight the challenges for multi-modal perception in campuses and other residential areas.