Abstract:This paper aims to efficiently enable large language models (LLMs) to use external knowledge and goal guidance in conversational recommender system (CRS) tasks. Advanced LLMs (e.g., ChatGPT) are limited in domain-specific CRS tasks for 1) generating grounded responses with recommendation-oriented knowledge, or 2) proactively leading the conversations through different dialogue goals. In this work, we first analyze those limitations through a comprehensive evaluation, showing the necessity of external knowledge and goal guidance which contribute significantly to the recommendation accuracy and language quality. In light of this finding, we propose a novel ChatCRS framework to decompose the complex CRS task into several sub-tasks through the implementation of 1) a knowledge retrieval agent using a tool-augmented approach to reason over external Knowledge Bases and 2) a goal-planning agent for dialogue goal prediction. Experimental results on two multi-goal CRS datasets reveal that ChatCRS sets new state-of-the-art benchmarks, improving language quality of informativeness by 17% and proactivity by 27%, and achieving a tenfold enhancement in recommendation accuracy.
Abstract:The demand for improved efficiency and accuracy in vaccine safety assessments is increasing. Here, we explore the application of computer vision technologies to automate the monitoring of experimental mice for potential side effects after vaccine administration. Traditional observation methods are labor-intensive and lack the capability for continuous monitoring. By deploying a computer vision system, our research aims to improve the efficiency and accuracy of vaccine safety assessments. The methodology involves training machine learning models on annotated video data of mice behaviors pre- and post-vaccination. Preliminary results indicate that computer vision effectively identify subtle changes, signaling possible side effects. Therefore, our approach has the potential to significantly enhance the monitoring process in vaccine trials in animals, providing a practical solution to the limitations of human observation.
Abstract:In Sequential Recommenders (SR), encoding and utilizing modalities in an end-to-end manner is costly in terms of modality encoder sizes. Two-stage approaches can mitigate such concerns, but they suffer from poor performance due to modality forgetting, where the sequential objective overshadows modality representation. We propose a lightweight knowledge distillation solution that preserves both merits: retaining modality information and maintaining high efficiency. Specifically, we introduce a novel method that enhances the learning of embeddings in SR through the supervision of modality correlations. The supervision signals are distilled from the original modality representations, including both (1) holistic correlations, which quantify their overall associations, and (2) dissected correlation types, which refine their relationship facets (honing in on specific aspects like color or shape consistency). To further address the issue of modality forgetting, we propose an asynchronous learning step, allowing the original information to be retained longer for training the representation learning module. Our approach is compatible with various backbone architectures and outperforms the top baselines by 6.8% on average. We empirically demonstrate that preserving original feature associations from modality encoders significantly boosts task-specific recommendation adaptation. Additionally, we find that larger modality encoders (e.g., Large Language Models) contain richer feature sets which necessitate more fine-grained modeling to reach their full performance potential.
Abstract:Previous zero-shot dialogue state tracking (DST) methods only apply transfer learning, but ignore unlabelled data in the target domain. We transform zero-shot DST into few-shot DST by utilising such unlabelled data via joint and self-training methods. Our method incorporates auxiliary tasks that generate slot types as inverse prompts for main tasks, creating slot values during joint training. Cycle consistency between these two tasks enables the generation and selection of quality samples in unknown target domains for subsequent fine-tuning. This approach also facilitates automatic label creation, thereby optimizing the training and fine-tuning of DST models. We demonstrate this method's effectiveness on large language models in zero-shot scenarios, improving average joint goal accuracy by $8\%$ across all domains in MultiWOZ.
Abstract:Conversational recommender systems (CRS) generate recommendations through an interactive process. However, not all CRS approaches use human conversations as their source of interaction data; the majority of prior CRS work simulates interactions by exchanging entity-level information. As a result, claims of prior CRS work do not generalise to real-world settings where conversations take unexpected turns, or where conversational and intent understanding is not perfect. To tackle this challenge, the research community has started to examine holistic CRS, which are trained using conversational data collected from real-world scenarios. Despite their emergence, such holistic approaches are under-explored. We present a comprehensive survey of holistic CRS methods by summarizing the literature in a structured manner. Our survey recognises holistic CRS approaches as having three components: 1) a backbone language model, the optional use of 2) external knowledge, and/or 3) external guidance. We also give a detailed analysis of CRS datasets and evaluation methods in real application scenarios. We offer our insight as to the current challenges of holistic CRS and possible future trends.
Abstract:Integrating CNNs and RNNs to capture spatiotemporal dependencies is a prevalent strategy for spatiotemporal prediction tasks. However, the property of CNNs to learn local spatial information decreases their efficiency in capturing spatiotemporal dependencies, thereby limiting their prediction accuracy. In this paper, we propose a new recurrent cell, SwinLSTM, which integrates Swin Transformer blocks and the simplified LSTM, an extension that replaces the convolutional structure in ConvLSTM with the self-attention mechanism. Furthermore, we construct a network with SwinLSTM cell as the core for spatiotemporal prediction. Without using unique tricks, SwinLSTM outperforms state-of-the-art methods on Moving MNIST, Human3.6m, TaxiBJ, and KTH datasets. In particular, it exhibits a significant improvement in prediction accuracy compared to ConvLSTM. Our competitive experimental results demonstrate that learning global spatial dependencies is more advantageous for models to capture spatiotemporal dependencies. We hope that SwinLSTM can serve as a solid baseline to promote the advancement of spatiotemporal prediction accuracy. The codes are publicly available at https://github.com/SongTang-x/SwinLSTM.