Abstract:Multi-objective preference alignment in language models often encounters a challenging trade-off: optimizing for one human preference (e.g., helpfulness) frequently compromises others (e.g., harmlessness) due to the inherent conflicts between competing objectives. While prior work mainly focuses on algorithmic solutions, we explore a novel data-driven approach to uncover the types of data that can effectively mitigate these conflicts. Specifically, we propose the concept of Reward Consistency (RC), which identifies samples that align with multiple preference objectives, thereby reducing conflicts during training. Through gradient-based analysis, we demonstrate that RC-compliant samples inherently constrain performance degradation during multi-objective optimization. Building on these insights, we further develop Reward Consistency Sampling, a framework that automatically constructs preference datasets that effectively mitigate conflicts during multi-objective alignment. Our generated data achieves an average improvement of 13.37% in both the harmless rate and helpfulness win rate when optimizing harmlessness and helpfulness, and can consistently resolve conflicts in varying multi-objective scenarios.
Abstract:Autonomous driving visual question answering (AD-VQA) aims to answer questions related to perception, prediction, and planning based on given driving scene images, heavily relying on the model's spatial understanding capabilities. Prior works typically express spatial information through textual representations of coordinates, resulting in semantic gaps between visual coordinate representations and textual descriptions. This oversight hinders the accurate transmission of spatial information and increases the expressive burden. To address this, we propose a novel Marker-based Prompt learning framework (MPDrive), which represents spatial coordinates by concise visual markers, ensuring linguistic expressive consistency and enhancing the accuracy of both visual perception and spatial expression in AD-VQA. Specifically, we create marker images by employing a detection expert to overlay object regions with numerical labels, converting complex textual coordinate generation into straightforward text-based visual marker predictions. Moreover, we fuse original and marker images as scene-level features and integrate them with detection priors to derive instance-level features. By combining these features, we construct dual-granularity visual prompts that stimulate the LLM's spatial perception capabilities. Extensive experiments on the DriveLM and CODA-LM datasets show that MPDrive achieves state-of-the-art performance, particularly in cases requiring sophisticated spatial understanding.
Abstract:Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
Abstract:We present a novel approach for synthesizing 3D facial motions from audio sequences using key motion embeddings. Despite recent advancements in data-driven techniques, accurately mapping between audio signals and 3D facial meshes remains challenging. Direct regression of the entire sequence often leads to over-smoothed results due to the ill-posed nature of the problem. To this end, we propose a progressive learning mechanism that generates 3D facial animations by introducing key motion capture to decrease cross-modal mapping uncertainty and learning complexity. Concretely, our method integrates linguistic and data-driven priors through two modules: the linguistic-based key motion acquisition and the cross-modal motion completion. The former identifies key motions and learns the associated 3D facial expressions, ensuring accurate lip-speech synchronization. The latter extends key motions into a full sequence of 3D talking faces guided by audio features, improving temporal coherence and audio-visual consistency. Extensive experimental comparisons against existing state-of-the-art methods demonstrate the superiority of our approach in generating more vivid and consistent talking face animations. Consistent enhancements in results through the integration of our proposed learning scheme with existing methods underscore the efficacy of our approach. Our code and weights will be at the project website: \url{https://github.com/ffxzh/KMTalk}.
Abstract:This article compares two style transfer methods in image processing: the traditional method, which synthesizes new images by stitching together small patches from existing images, and a modern machine learning-based approach that uses a segmentation network to isolate foreground objects and apply style transfer solely to the background. The traditional method excels in creating artistic abstractions but can struggle with seamlessness, whereas the machine learning method preserves the integrity of foreground elements while enhancing the background, offering improved aesthetic quality and computational efficiency. Our study indicates that machine learning-based methods are more suited for real-world applications where detail preservation in foreground elements is essential.
Abstract:Despite the surprisingly high intelligence exhibited by Large Language Models (LLMs), we are somehow intimidated to fully deploy them into real-life applications considering their black-box nature. Concept-based explanations arise as a promising avenue for explaining what the LLMs have learned, making them more transparent to humans. However, current evaluations for concepts tend to be heuristic and non-deterministic, e.g. case study or human evaluation, hindering the development of the field. To bridge the gap, we approach concept-based explanation evaluation via faithfulness and readability. We first introduce a formal definition of concept generalizable to diverse concept-based explanations. Based on this, we quantify faithfulness via the difference in the output upon perturbation. We then provide an automatic measure for readability, by measuring the coherence of patterns that maximally activate a concept. This measure serves as a cost-effective and reliable substitute for human evaluation. Finally, based on measurement theory, we describe a meta-evaluation method for evaluating the above measures via reliability and validity, which can be generalized to other tasks as well. Extensive experimental analysis has been conducted to validate and inform the selection of concept evaluation measures.
Abstract:Current open-source large language models (LLMs) are often undergone careful safety alignment before public release. Some attack methods have also been proposed that help check for safety vulnerabilities in LLMs to ensure alignment robustness. However, many of these methods have moderate attack success rates. Even when successful, the harmfulness of their outputs cannot be guaranteed, leading to suspicions that these methods have not accurately identified the safety vulnerabilities of LLMs. In this paper, we introduce a LLM attack method utilizing concept-based model explanation, where we extract safety concept activation vectors (SCAVs) from LLMs' activation space, enabling efficient attacks on well-aligned LLMs like LLaMA-2, achieving near 100% attack success rate as if LLMs are completely unaligned. This suggests that LLMs, even after thorough safety alignment, could still pose potential risks to society upon public release. To evaluate the harmfulness of outputs resulting with various attack methods, we propose a comprehensive evaluation method that reduces the potential inaccuracies of existing evaluations, and further validate that our method causes more harmful content. Additionally, we discover that the SCAVs show some transferability across different open-source LLMs.