Kings College London
Abstract:Artificial intelligence (AI) methods are being used increasingly for the automated segmentation of cine cardiac magnetic resonance (CMR) imaging. However, these methods have been shown to be subject to race bias, i.e. they exhibit different levels of performance for different races depending on the (im)balance of the data used to train the AI model. In this paper we investigate the source of this bias, seeking to understand its root cause(s) so that it can be effectively mitigated. We perform a series of classification and segmentation experiments on short-axis cine CMR images acquired from Black and White subjects from the UK Biobank and apply AI interpretability methods to understand the results. In the classification experiments, we found that race can be predicted with high accuracy from the images alone, but less accurately from ground truth segmentations, suggesting that the distributional shift between races, which is often the cause of AI bias, is mostly image-based rather than segmentation-based. The interpretability methods showed that most attention in the classification models was focused on non-heart regions, such as subcutaneous fat. Cropping the images tightly around the heart reduced classification accuracy to around chance level. Similarly, race can be predicted from the latent representations of a biased segmentation model, suggesting that race information is encoded in the model. Cropping images tightly around the heart reduced but did not eliminate segmentation bias. We also investigate the influence of possible confounders on the bias observed.
Abstract:Panoptic Scene Graph Generation (PSG) aims to segment objects and recognize their relations, enabling the structured understanding of an image. Previous methods focus on predicting predefined object and relation categories, hence limiting their applications in the open world scenarios. With the rapid development of large multimodal models (LMMs), significant progress has been made in open-set object detection and segmentation, yet open-set relation prediction in PSG remains unexplored. In this paper, we focus on the task of open-set relation prediction integrated with a pretrained open-set panoptic segmentation model to achieve true open-set panoptic scene graph generation (OpenPSG). Our OpenPSG leverages LMMs to achieve open-set relation prediction in an autoregressive manner. We introduce a relation query transformer to efficiently extract visual features of object pairs and estimate the existence of relations between them. The latter can enhance the prediction efficiency by filtering irrelevant pairs. Finally, we design the generation and judgement instructions to perform open-set relation prediction in PSG autoregressively. To our knowledge, we are the first to propose the open-set PSG task. Extensive experiments demonstrate that our method achieves state-of-the-art performance in open-set relation prediction and panoptic scene graph generation. Code is available at \url{https://github.com/franciszzj/OpenPSG}.
Abstract:Facial video-based remote physiological measurement is a promising research area for detecting human vital signs (e.g., heart rate, respiration frequency) in a non-contact way. Conventional approaches are mostly supervised learning, requiring extensive collections of facial videos and synchronously recorded photoplethysmography (PPG) signals. To tackle it, self-supervised learning has recently gained attentions; due to the lack of ground truth PPG signals, its performance is however limited. In this paper, we propose a novel self-supervised framework that successfully integrates the popular vision-language models (VLMs) into the remote physiological measurement task. Given a facial video, we first augment its positive and negative video samples with varying rPPG signal frequencies. Next, we introduce a frequency-oriented vision-text pair generation method by carefully creating contrastive spatio-temporal maps from positive and negative samples and designing proper text prompts to describe their relative ratios of signal frequencies. A pre-trained VLM is employed to extract features for these formed vision-text pairs and estimate rPPG signals thereafter. We develop a series of generative and contrastive learning mechanisms to optimize the VLM, including the text-guided visual map reconstruction task, the vision-text contrastive learning task, and the frequency contrastive and ranking task. Overall, our method for the first time adapts VLMs to digest and align the frequency-related knowledge in vision and text modalities. Extensive experiments on four benchmark datasets demonstrate that it significantly outperforms state of the art self-supervised methods.
Abstract:In laparoscopic and robotic surgery, precise tool instance segmentation is an essential technology for advanced computer-assisted interventions. Although publicly available procedures of routine surgeries exist, they often lack comprehensive annotations for tool instance segmentation. Additionally, the majority of standard datasets for tool segmentation are derived from porcine(pig) surgeries. To address this gap, we introduce CholecInstanceSeg, the largest open-access tool instance segmentation dataset to date. Derived from the existing CholecT50 and Cholec80 datasets, CholecInstanceSeg provides novel annotations for laparoscopic cholecystectomy procedures in patients. Our dataset comprises 41.9k annotated frames extracted from 85 clinical procedures and 64.4k tool instances, each labelled with semantic masks and instance IDs. To ensure the reliability of our annotations, we perform extensive quality control, conduct label agreement statistics, and benchmark the segmentation results with various instance segmentation baselines. CholecInstanceSeg aims to advance the field by offering a comprehensive and high-quality open-access dataset for the development and evaluation of tool instance segmentation algorithms.
Abstract:The performance of supervised semantic segmentation methods highly relies on the availability of large-scale training data. To alleviate this dependence, few-shot semantic segmentation (FSS) is introduced to leverage the model trained on base classes with sufficient data into the segmentation of novel classes with few data. FSS methods face the challenge of model generalization on novel classes due to the distribution shift between base and novel classes. To overcome this issue, we propose a class-shared memory (CSM) module consisting of a set of learnable memory vectors. These memory vectors learn elemental object patterns from base classes during training whilst re-encoding query features during both training and inference, thereby improving the distribution alignment between base and novel classes. Furthermore, to cope with the performance degradation resulting from the intra-class variance across images, we introduce an uncertainty-based feature augmentation (UFA) module to produce diverse query features during training for improving the model's robustness. We integrate CSM and UFA into representative FSS works, with experimental results on the widely-used PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrating the superior performance of ours over state of the art.
Abstract:Radiology report generation (RRG) has attracted significant attention due to its potential to reduce the workload of radiologists. Current RRG approaches are still unsatisfactory against clinical standards. This paper introduces a novel RRG method, \textbf{LM-RRG}, that integrates large models (LMs) with clinical quality reinforcement learning to generate accurate and comprehensive chest X-ray radiology reports. Our method first designs a large language model driven feature extractor to analyze and interpret different regions of the chest X-ray image, emphasizing specific regions with medical significance. Next, based on the large model's decoder, we develop a multimodal report generator that leverages multimodal prompts from visual features and textual instruction to produce the radiology report in an auto-regressive way. Finally, to better reflect the clinical significant and insignificant errors that radiologists would normally assign in the report, we introduce a novel clinical quality reinforcement learning strategy. It utilizes the radiology report clinical quality (RadCliQ) metric as a reward function in the learning process. Extensive experiments on the MIMIC-CXR and IU-Xray datasets demonstrate the superiority of our method over the state of the art.
Abstract:The process of estimating and counting tree density using only a single aerial or satellite image is a difficult task in the fields of photogrammetry and remote sensing. However, it plays a crucial role in the management of forests. The huge variety of trees in varied topography severely hinders tree counting models to perform well. The purpose of this paper is to propose a framework that is learnt from the source domain with sufficient labeled trees and is adapted to the target domain with only a limited number of labeled trees. Our method, termed as AdaTreeFormer, contains one shared encoder with a hierarchical feature extraction scheme to extract robust features from the source and target domains. It also consists of three subnets: two for extracting self-domain attention maps from source and target domains respectively and one for extracting cross-domain attention maps. For the latter, an attention-to-adapt mechanism is introduced to distill relevant information from different domains while generating tree density maps; a hierarchical cross-domain feature alignment scheme is proposed that progressively aligns the features from the source and target domains. We also adopt adversarial learning into the framework to further reduce the gap between source and target domains. Our AdaTreeFormer is evaluated on six designed domain adaptation tasks using three tree counting datasets, ie Jiangsu, Yosemite, and London; and outperforms the state of the art methods significantly.
Abstract:Minimally invasive surgery (MIS) has revolutionized many procedures and led to reduced recovery time and risk of patient injury. However, MIS poses additional complexity and burden on surgical teams. Data-driven surgical vision algorithms are thought to be key building blocks in the development of future MIS systems with improved autonomy. Recent advancements in machine learning and computer vision have led to successful applications in analyzing videos obtained from MIS with the promise of alleviating challenges in MIS videos. Surgical scene and action understanding encompasses multiple related tasks that, when solved individually, can be memory-intensive, inefficient, and fail to capture task relationships. Multitask learning (MTL), a learning paradigm that leverages information from multiple related tasks to improve performance and aid generalization, is wellsuited for fine-grained and high-level understanding of MIS data. This review provides an overview of the current state-of-the-art MTL systems that leverage videos obtained from MIS. Beyond listing published approaches, we discuss the benefits and limitations of these MTL systems. Moreover, this manuscript presents an analysis of the literature for various application fields of MTL in MIS, including those with large models, highlighting notable trends, new directions of research, and developments.
Abstract:Detecting objects in low-light scenarios presents a persistent challenge, as detectors trained on well-lit data exhibit significant performance degradation on low-light data due to the low visibility. Previous methods mitigate this issue by investigating image enhancement or object detection techniques using low-light image datasets. However, the progress is impeded by the inherent difficulties associated with collecting and annotating low-light images. To address this challenge, we propose to boost low-light object detection with zero-shot day-night domain adaptation, which aims to generalize a detector from well-lit scenarios to low-light ones without requiring real low-light data. We first design a reflectance representation learning module to learn Retinex-based illumination invariance in images with a carefully designed illumination invariance reinforcement strategy. Next, an interchange-redecomposition-coherence procedure is introduced to improve over the vanilla Retinex image decomposition process by performing two sequential image decompositions and introducing a redecomposition cohering loss. Extensive experiments on ExDark, DARK FACE and CODaN datasets show strong low-light generalizability of our method.
Abstract:Panoptic Scene Graph Generation (PSG) aims at achieving a comprehensive image understanding by simultaneously segmenting objects and predicting relations among objects. However, the long-tail problem among relations leads to unsatisfactory results in real-world applications. Prior methods predominantly rely on vision information or utilize limited language information, such as object or relation names, thereby overlooking the utility of language information. Leveraging the recent progress in Large Language Models (LLMs), we propose to use language information to assist relation prediction, particularly for rare relations. To this end, we propose the Vision-Language Prompting (VLPrompt) model, which acquires vision information from images and language information from LLMs. Then, through a prompter network based on attention mechanism, it achieves precise relation prediction. Our extensive experiments show that VLPrompt significantly outperforms previous state-of-the-art methods on the PSG dataset, proving the effectiveness of incorporating language information and alleviating the long-tail problem of relations.