NEC Corporation
Abstract:Short answer assessment is a vital component of science education, allowing evaluation of students' complex three-dimensional understanding. Large language models (LLMs) that possess human-like ability in linguistic tasks are increasingly popular in assisting human graders to reduce their workload. However, LLMs' limitations in domain knowledge restrict their understanding in task-specific requirements and hinder their ability to achieve satisfactory performance. Retrieval-augmented generation (RAG) emerges as a promising solution by enabling LLMs to access relevant domain-specific knowledge during assessment. In this work, we propose an adaptive RAG framework for automated grading that dynamically retrieves and incorporates domain-specific knowledge based on the question and student answer context. Our approach combines semantic search and curated educational sources to retrieve valuable reference materials. Experimental results in a science education dataset demonstrate that our system achieves an improvement in grading accuracy compared to baseline LLM approaches. The findings suggest that RAG-enhanced grading systems can serve as reliable support with efficient performance gains.
Abstract:The rise of artificial intelligence (AI) technologies, particularly large language models (LLMs), has brought significant advancements to the field of education. Among various applications, automatic short answer grading (ASAG), which focuses on evaluating open-ended textual responses, has seen remarkable progress with the introduction of LLMs. These models not only enhance grading performance compared to traditional ASAG approaches but also move beyond simple comparisons with predefined "golden" answers, enabling more sophisticated grading scenarios, such as rubric-based evaluation. However, existing LLM-powered methods still face challenges in achieving human-level grading performance in rubric-based assessments due to their reliance on fully automated approaches. In this work, we explore the potential of LLMs in ASAG tasks by leveraging their interactive capabilities through a human-in-the-loop (HITL) approach. Our proposed framework, GradeHITL, utilizes the generative properties of LLMs to pose questions to human experts, incorporating their insights to refine grading rubrics dynamically. This adaptive process significantly improves grading accuracy, outperforming existing methods and bringing ASAG closer to human-level evaluation.
Abstract:Vector Pseudo Relevance Feedback (VPRF) has shown promising results in improving BERT-based dense retrieval systems through iterative refinement of query representations. This paper investigates the generalizability of VPRF to Large Language Model (LLM) based dense retrievers. We introduce LLM-VPRF and evaluate its effectiveness across multiple benchmark datasets, analyzing how different LLMs impact the feedback mechanism. Our results demonstrate that VPRF's benefits successfully extend to LLM architectures, establishing it as a robust technique for enhancing dense retrieval performance regardless of the underlying models. This work bridges the gap between VPRF with traditional BERT-based dense retrievers and modern LLMs, while providing insights into their future directions.
Abstract:Pseudo-relevance feedback (PRF) refines queries by leveraging initially retrieved documents to improve retrieval effectiveness. In this paper, we investigate how large language models (LLMs) can facilitate PRF for zero-shot LLM-based dense retrieval, extending the recently proposed PromptReps method. Specifically, our approach uses LLMs to extract salient passage features-such as keywords and summaries-from top-ranked documents, which are then integrated into PromptReps to produce enhanced query representations. Experiments on passage retrieval benchmarks demonstrate that incorporating PRF significantly boosts retrieval performance. Notably, smaller rankers with PRF can match the effectiveness of larger rankers without PRF, highlighting PRF's potential to improve LLM-driven search while maintaining an efficient balance between effectiveness and resource usage.
Abstract:Large Language Models (LLMs), such as GPT-4, have demonstrated impressive mathematical reasoning capabilities, achieving near-perfect performance on benchmarks like GSM8K. However, their application in personalized education remains limited due to an overemphasis on correctness over error diagnosis and feedback generation. Current models fail to provide meaningful insights into the causes of student mistakes, limiting their utility in educational contexts. To address these challenges, we present three key contributions. First, we introduce \textbf{MathCCS} (Mathematical Classification and Constructive Suggestions), a multi-modal benchmark designed for systematic error analysis and tailored feedback. MathCCS includes real-world problems, expert-annotated error categories, and longitudinal student data. Evaluations of state-of-the-art models, including \textit{Qwen2-VL}, \textit{LLaVA-OV}, \textit{Claude-3.5-Sonnet} and \textit{GPT-4o}, reveal that none achieved classification accuracy above 30\% or generated high-quality suggestions (average scores below 4/10), highlighting a significant gap from human-level performance. Second, we develop a sequential error analysis framework that leverages historical data to track trends and improve diagnostic precision. Finally, we propose a multi-agent collaborative framework that combines a Time Series Agent for historical analysis and an MLLM Agent for real-time refinement, enhancing error classification and feedback generation. Together, these contributions provide a robust platform for advancing personalized education, bridging the gap between current AI capabilities and the demands of real-world teaching.
Abstract:We introduce Sigma, an efficient large language model specialized for the system domain, empowered by a novel architecture including DiffQKV attention, and pre-trained on our meticulously collected system domain data. DiffQKV attention significantly enhances the inference efficiency of Sigma by optimizing the Query (Q), Key (K), and Value (V) components in the attention mechanism differentially, based on their varying impacts on the model performance and efficiency indicators. Specifically, we (1) conduct extensive experiments that demonstrate the model's varying sensitivity to the compression of K and V components, leading to the development of differentially compressed KV, and (2) propose augmented Q to expand the Q head dimension, which enhances the model's representation capacity with minimal impacts on the inference speed. Rigorous theoretical and empirical analyses reveal that DiffQKV attention significantly enhances efficiency, achieving up to a 33.36% improvement in inference speed over the conventional grouped-query attention (GQA) in long-context scenarios. We pre-train Sigma on 6T tokens from various sources, including 19.5B system domain data that we carefully collect and 1T tokens of synthesized and rewritten data. In general domains, Sigma achieves comparable performance to other state-of-arts models. In the system domain, we introduce the first comprehensive benchmark AIMicius, where Sigma demonstrates remarkable performance across all tasks, significantly outperforming GPT-4 with an absolute improvement up to 52.5%.
Abstract:We introduce PaSa, an advanced Paper Search agent powered by large language models. PaSa can autonomously make a series of decisions, including invoking search tools, reading papers, and selecting relevant references, to ultimately obtain comprehensive and accurate results for complex scholarly queries. We optimize PaSa using reinforcement learning with a synthetic dataset, AutoScholarQuery, which includes 35k fine-grained academic queries and corresponding papers sourced from top-tier AI conference publications. Additionally, we develop RealScholarQuery, a benchmark collecting real-world academic queries to assess PaSa performance in more realistic scenarios. Despite being trained on synthetic data, PaSa significantly outperforms existing baselines on RealScholarQuery, including Google, Google Scholar, Google with GPT-4 for paraphrased queries, chatGPT (search-enabled GPT-4o), GPT-o1, and PaSa-GPT-4o (PaSa implemented by prompting GPT-4o). Notably, PaSa-7B surpasses the best Google-based baseline, Google with GPT-4o, by 37.78% in recall@20 and 39.90% in recall@50. It also exceeds PaSa-GPT-4o by 30.36% in recall and 4.25% in precision. Model, datasets, and code are available at https://github.com/bytedance/pasa.
Abstract:Large Language Models (LLMs) have been widely used to generate responses on social topics due to their world knowledge and generative capabilities. Beyond reasoning and generation performance, political bias is an essential issue that warrants attention. Political bias, as a universal phenomenon in human society, may be transferred to LLMs and distort LLMs' behaviors of information acquisition and dissemination with humans, leading to unequal access among different groups of people. To prevent LLMs from reproducing and reinforcing political biases, and to encourage fairer LLM-human interactions, comprehensively examining political bias in popular LLMs becomes urgent and crucial. In this study, we systematically measure the political biases in a wide range of LLMs, using a curated set of questions addressing political bias in various contexts. Our findings reveal distinct patterns in how LLMs respond to political topics. For highly polarized topics, most LLMs exhibit a pronounced left-leaning bias. Conversely, less polarized topics elicit greater consensus, with similar response patterns across different LLMs. Additionally, we analyze how LLM characteristics, including release date, model scale, and region of origin affect political bias. The results indicate political biases evolve with model scale and release date, and are also influenced by regional factors of LLMs.
Abstract:The rise of large language models (LLMs) offers new opportunities for automatic error detection in education, particularly for math word problems (MWPs). While prior studies demonstrate the promise of LLMs as error detectors, they overlook the presence of multiple valid solutions for a single MWP. Our preliminary analysis reveals a significant performance gap between conventional and alternative solutions in MWPs, a phenomenon we term conformity bias in this work. To mitigate this bias, we introduce the Ask-Before-Detect (AskBD) framework, which generates adaptive reference solutions using LLMs to enhance error detection. Experiments on 200 examples of GSM8K show that AskBD effectively mitigates bias and improves performance, especially when combined with reasoning-enhancing techniques like chain-of-thought prompting.
Abstract:Controllable person image generation aims to generate a person image conditioned on reference images, allowing precise control over the person's appearance or pose. However, prior methods often distort fine-grained textural details from the reference image, despite achieving high overall image quality. We attribute these distortions to inadequate attention to corresponding regions in the reference image. To address this, we thereby propose learning flow fields in attention (Leffa), which explicitly guides the target query to attend to the correct reference key in the attention layer during training. Specifically, it is realized via a regularization loss on top of the attention map within a diffusion-based baseline. Our extensive experiments show that Leffa achieves state-of-the-art performance in controlling appearance (virtual try-on) and pose (pose transfer), significantly reducing fine-grained detail distortion while maintaining high image quality. Additionally, we show that our loss is model-agnostic and can be used to improve the performance of other diffusion models.