Abstract:Autonomous driving visual question answering (AD-VQA) aims to answer questions related to perception, prediction, and planning based on given driving scene images, heavily relying on the model's spatial understanding capabilities. Prior works typically express spatial information through textual representations of coordinates, resulting in semantic gaps between visual coordinate representations and textual descriptions. This oversight hinders the accurate transmission of spatial information and increases the expressive burden. To address this, we propose a novel Marker-based Prompt learning framework (MPDrive), which represents spatial coordinates by concise visual markers, ensuring linguistic expressive consistency and enhancing the accuracy of both visual perception and spatial expression in AD-VQA. Specifically, we create marker images by employing a detection expert to overlay object regions with numerical labels, converting complex textual coordinate generation into straightforward text-based visual marker predictions. Moreover, we fuse original and marker images as scene-level features and integrate them with detection priors to derive instance-level features. By combining these features, we construct dual-granularity visual prompts that stimulate the LLM's spatial perception capabilities. Extensive experiments on the DriveLM and CODA-LM datasets show that MPDrive achieves state-of-the-art performance, particularly in cases requiring sophisticated spatial understanding.
Abstract:We propose TETRIS, a novel method that optimizes the total throughput of batch speculative decoding in multi-request settings. Unlike existing methods that optimize for a single request or a group of requests as a whole, TETRIS actively selects the most promising draft tokens (for every request in a batch) to be accepted when verified in parallel, resulting in fewer rejected tokens and hence less wasted computing resources. Such an effective resource utilization to achieve fast inference in large language models (LLMs) is especially important to service providers with limited inference capacity. Compared to baseline speculative decoding, TETRIS yields a consistently higher acceptance rate and more effective utilization of the limited inference capacity. We show theoretically and empirically that TETRIS outperforms baseline speculative decoding and existing methods that dynamically select draft tokens, leading to a more efficient batch inference in LLMs.
Abstract:Binary Spiking Neural Networks (BSNNs) inherit the eventdriven paradigm of SNNs, while also adopting the reduced storage burden of binarization techniques. These distinct advantages grant BSNNs lightweight and energy-efficient characteristics, rendering them ideal for deployment on resource-constrained edge devices. However, due to the binary synaptic weights and non-differentiable spike function, effectively training BSNNs remains an open question. In this paper, we conduct an in-depth analysis of the challenge for BSNN learning, namely the frequent weight sign flipping problem. To mitigate this issue, we propose an Adaptive Gradient Modulation Mechanism (AGMM), which is designed to reduce the frequency of weight sign flipping by adaptively adjusting the gradients during the learning process. The proposed AGMM can enable BSNNs to achieve faster convergence speed and higher accuracy, effectively narrowing the gap between BSNNs and their full-precision equivalents. We validate AGMM on both static and neuromorphic datasets, and results indicate that it achieves state-of-the-art results among BSNNs. This work substantially reduces storage demands and enhances SNNs' inherent energy efficiency, making them highly feasible for resource-constrained environments.
Abstract:Brain-inspired Spiking Neural Networks (SNNs) leverage sparse spikes to encode information and operate in an asynchronous event-driven manner, offering a highly energy-efficient paradigm for machine intelligence. However, the current SNN community focuses primarily on performance improvement by developing large-scale models, which limits the applicability of SNNs in resource-limited edge devices. In this paper, we propose a hardware-friendly and lightweight SNN, aimed at effectively deploying high-performance SNN in resource-limited scenarios. Specifically, we first develop a baseline model that integrates uniform quantization and structured pruning, called QP-SNN baseline. While this baseline significantly reduces storage demands and computational costs, it suffers from performance decline. To address this, we conduct an in-depth analysis of the challenges in quantization and pruning that lead to performance degradation and propose solutions to enhance the baseline's performance. For weight quantization, we propose a weight rescaling strategy that utilizes bit width more effectively to enhance the model's representation capability. For structured pruning, we propose a novel pruning criterion using the singular value of spatiotemporal spike activities to enable more accurate removal of redundant kernels. Extensive experiments demonstrate that integrating two proposed methods into the baseline allows QP-SNN to achieve state-of-the-art performance and efficiency, underscoring its potential for enhancing SNN deployment in edge intelligence computing.
Abstract:Transformer-based Spiking Neural Networks (SNNs) introduce a novel event-driven self-attention paradigm that combines the high performance of Transformers with the energy efficiency of SNNs. However, the larger model size and increased computational demands of the Transformer structure limit their practicality in resource-constrained scenarios. In this paper, we integrate binarization techniques into Transformer-based SNNs and propose the Binary Event-Driven Spiking Transformer, i.e. BESTformer. The proposed BESTformer can significantly reduce storage and computational demands by representing weights and attention maps with a mere 1-bit. However, BESTformer suffers from a severe performance drop from its full-precision counterpart due to the limited representation capability of binarization. To address this issue, we propose a Coupled Information Enhancement (CIE) method, which consists of a reversible framework and information enhancement distillation. By maximizing the mutual information between the binary model and its full-precision counterpart, the CIE method effectively mitigates the performance degradation of the BESTformer. Extensive experiments on static and neuromorphic datasets demonstrate that our method achieves superior performance to other binary SNNs, showcasing its potential as a compact yet high-performance model for resource-limited edge devices.
Abstract:Integrated sensing and communication (ISAC) is emerging as a pivotal technology for next-generation wireless networks. However, existing ISAC systems are based on fixed-position antennas (FPAs), which inevitably incur a loss in performance when balancing the trade-off between sensing and communication. Movable antenna (MA) technology offers promising potential to enhance ISAC performance by enabling flexible antenna movement. Nevertheless, exploiting more spatial channel variations requires larger antenna moving regions, which may invalidate the conventional far-field assumption for channels between transceivers. Therefore, this paper utilizes the MA to enhance sensing and communication capabilities in near-field ISAC systems, where a full-duplex base station (BS) is equipped with multiple transmit and receive MAs movable in large-size regions to simultaneously sense multiple targets and serve multiple uplink (UL) and downlink (DL) users for communication. We aim to maximize the weighted sum of sensing and communication rates (WSR) by jointly designing the transmit beamformers, sensing signal covariance matrices, receive beamformers, and MA positions at the BS, as well as the UL power allocation. The resulting optimization problem is challenging to solve, while we propose an efficient two-layer random position (RP) algorithm to tackle it. In addition, to reduce movement delay and cost, we design an antenna position matching (APM) algorithm based on the greedy strategy to minimize the total MA movement distance. Extensive simulation results demonstrate the substantial performance improvement achieved by deploying MAs in near-field ISAC systems. Moreover, the results show the effectiveness of the proposed APM algorithm in reducing the antenna movement distance, which is helpful for energy saving and time overhead reduction for MA-aided near-field ISAC systems with large moving regions.
Abstract:For gradient-based machine learning (ML) methods commonly adopted in practice such as stochastic gradient descent, the de facto differential privacy (DP) technique is perturbing the gradients with random Gaussian noise. Data valuation attributes the ML performance to the training data and is widely used in privacy-aware applications that require enforcing DP such as data pricing, collaborative ML, and federated learning (FL). Can existing data valuation methods still be used when DP is enforced via gradient perturbations? We show that the answer is no with the default approach of injecting i.i.d.~random noise to the gradients because the estimation uncertainty of the data value estimation paradoxically linearly scales with more estimation budget, producing estimates almost like random guesses. To address this issue, we propose to instead inject carefully correlated noise to provably remove the linear scaling of estimation uncertainty w.r.t.~the budget. We also empirically demonstrate that our method gives better data value estimates on various ML tasks and is applicable to use cases including dataset valuation and~FL.
Abstract:Generalized few-shot semantic segmentation (GFSS) aims to segment objects of both base and novel classes, using sufficient samples of base classes and few samples of novel classes. Representative GFSS approaches typically employ a two-phase training scheme, involving base class pre-training followed by novel class fine-tuning, to learn the classifiers for base and novel classes respectively. Nevertheless, distribution gap exists between base and novel classes in this process. To narrow this gap, we exploit effective knowledge transfer from base to novel classes. First, a novel prototype modulation module is designed to modulate novel class prototypes by exploiting the correlations between base and novel classes. Second, a novel classifier calibration module is proposed to calibrate the weight distribution of the novel classifier according to that of the base classifier. Furthermore, existing GFSS approaches suffer from a lack of contextual information for novel classes due to their limited samples, we thereby introduce a context consistency learning scheme to transfer the contextual knowledge from base to novel classes. Extensive experiments on PASCAL-5$^i$ and COCO-20$^i$ demonstrate that our approach significantly enhances the state of the art in the GFSS setting. The code is available at: https://github.com/HHHHedy/GFSS-EKT.
Abstract:Recently, developing unified medical image segmentation models gains increasing attention, especially with the advent of the Segment Anything Model (SAM). SAM has shown promising binary segmentation performance in natural domains, however, transferring it to the medical domain remains challenging, as medical images often possess substantial inter-category overlaps. To address this, we propose the SEmantic-Guided SAM (SEG-SAM), a unified medical segmentation model that incorporates semantic medical knowledge to enhance medical segmentation performance. First, to avoid the potential conflict between binary and semantic predictions, we introduce a semantic-aware decoder independent of SAM's original decoder, specialized for both semantic segmentation on the prompted object and classification on unprompted objects in images. To further enhance the model's semantic understanding, we solicit key characteristics of medical categories from large language models and incorporate them into SEG-SAM through a text-to-vision semantic module, adaptively transferring the language information into the visual segmentation task. In the end, we introduce the cross-mask spatial alignment strategy to encourage greater overlap between the predicted masks from SEG-SAM's two decoders, thereby benefiting both predictions. Extensive experiments demonstrate that SEG-SAM outperforms state-of-the-art SAM-based methods in unified binary medical segmentation and task-specific methods in semantic medical segmentation, showcasing promising results and potential for broader medical applications.
Abstract:Controllable person image generation aims to generate a person image conditioned on reference images, allowing precise control over the person's appearance or pose. However, prior methods often distort fine-grained textural details from the reference image, despite achieving high overall image quality. We attribute these distortions to inadequate attention to corresponding regions in the reference image. To address this, we thereby propose learning flow fields in attention (Leffa), which explicitly guides the target query to attend to the correct reference key in the attention layer during training. Specifically, it is realized via a regularization loss on top of the attention map within a diffusion-based baseline. Our extensive experiments show that Leffa achieves state-of-the-art performance in controlling appearance (virtual try-on) and pose (pose transfer), significantly reducing fine-grained detail distortion while maintaining high image quality. Additionally, we show that our loss is model-agnostic and can be used to improve the performance of other diffusion models.