Abstract:Data valuation is a class of techniques for quantitatively assessing the value of data for applications like pricing in data marketplaces. Existing data valuation methods define a value for a discrete dataset. However, in many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled. For example, consider a buyer trying to evaluate whether to purchase data from different vendors. The buyer may observe (and compare) only a small preview sample from each vendor, to decide which vendor's data distribution is most useful to the buyer and purchase. The core question is how should we compare the values of data distributions from their samples? Under a Huber characterization of the data heterogeneity across vendors, we propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies for comparing data distributions from samples. We empirically demonstrate that our method is sample-efficient and effective in identifying valuable data distributions against several existing baselines, on multiple real-world datasets (e.g., network intrusion detection, credit card fraud detection) and downstream applications (classification, regression).
Abstract:Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.
Abstract:This paper considers a novel online fair division problem involving multiple agents in which a learner observes an indivisible item that has to be irrevocably allocated to one of the agents while satisfying a fairness and efficiency constraint. Existing algorithms assume a small number of items with a sufficiently large number of copies, which ensures a good utility estimation for all item-agent pairs. However, such an assumption may not hold in many real-life applications, e.g., an online platform that has a large number of users (items) who only use the platform's service providers (agents) a few times (a few copies of items), which makes it difficult to estimate the utility for all item-agent pairs. To overcome this challenge, we model the online fair division problem using contextual bandits, assuming the utility is an unknown function of the item-agent features. We then propose algorithms for online fair division with sub-linear regret guarantees. Our experimental results also verify the different performance aspects of the proposed algorithms.
Abstract:Existing sample-based methods, like influence functions and representer points, measure the importance of a training point by approximating the effect of its removal from training. As such, they are skewed towards outliers and points that are very close to the decision boundaries. The explanations provided by these methods are often static and not specific enough for different test points. In this paper, we propose a method to generate an explanation in the form of support spectrums which are based on two main ideas: the support sets and a global-to-local importance measure. The support set is the set of training points, in the predicted class, that ``lie in between'' the test point and training points in the other classes. They indicate how well the test point can be distinguished from the points not in the predicted class. The global-to-local importance measure is obtained by decoupling existing methods into the global and local components which are then used to select the points in the support set. Using this method, we are able to generate explanations that are tailored to specific test points. In the experiments, we show the effectiveness of the method in image classification and text generation tasks.
Abstract:Contextual dueling bandit is used to model the bandit problems, where a learner's goal is to find the best arm for a given context using observed noisy preference feedback over the selected arms for the past contexts. However, existing algorithms assume the reward function is linear, which can be complex and non-linear in many real-life applications like online recommendations or ranking web search results. To overcome this challenge, we use a neural network to estimate the reward function using preference feedback for the previously selected arms. We propose upper confidence bound- and Thompson sampling-based algorithms with sub-linear regret guarantees that efficiently select arms in each round. We then extend our theoretical results to contextual bandit problems with binary feedback, which is in itself a non-trivial contribution. Experimental results on the problem instances derived from synthetic datasets corroborate our theoretical results.
Abstract:Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established. Therefore, understanding how LLMs reason and make decisions is crucial for their safe deployment. This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt. Leveraging the insight that LLMs learn to infer latent concepts during pretraining, we propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty. We show that the uncertainty decreases as the prompt's informativeness increases, similar to epistemic uncertainty. Our detailed experimental results on real datasets validate our proposed model.
Abstract:The rapid evolution of large language models (LLMs) represents a substantial leap forward in natural language understanding and generation. However, alongside these advancements come significant challenges related to the accountability and transparency of LLM responses. Reliable source attribution is essential to adhering to stringent legal and regulatory standards, including those set forth by the General Data Protection Regulation. Despite the well-established methods in source attribution within the computer vision domain, the application of robust attribution frameworks to natural language processing remains underexplored. To bridge this gap, we propose a novel and versatile TRansformer-based Attribution framework using Contrastive Embeddings called TRACE that, in particular, exploits contrastive learning for source attribution. We perform an extensive empirical evaluation to demonstrate the performance and efficiency of TRACE in various settings and show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of LLMs.
Abstract:Protecting intellectual property (IP) of text such as articles and code is increasingly important, especially as sophisticated attacks become possible, such as paraphrasing by large language models (LLMs) or even unauthorized training of LLMs on copyrighted text to infringe such IP. However, existing text watermarking methods are not robust enough against such attacks nor scalable to millions of users for practical implementation. In this paper, we propose Waterfall, the first training-free framework for robust and scalable text watermarking applicable across multiple text types (e.g., articles, code) and languages supportable by LLMs, for general text and LLM data provenance. Waterfall comprises several key innovations, such as being the first to use LLM as paraphrasers for watermarking along with a novel combination of techniques that are surprisingly effective in achieving robust verifiability and scalability. We empirically demonstrate that Waterfall achieves significantly better scalability, robust verifiability, and computational efficiency compared to SOTA article-text watermarking methods, and also showed how it could be directly applied to the watermarking of code.
Abstract:This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and yet it receives disproportionally low attention from the research community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.
Abstract:The increasing complexity of foundational models underscores the necessity for explainability, particularly for fine-tuning, the most widely used training method for adapting models to downstream tasks. Instance attribution, one type of explanation, attributes the model prediction to each training example by an instance score. However, the robustness of instance scores, specifically towards dataset resampling, has been overlooked. To bridge this gap, we propose a notion of robustness on the sign of the instance score. We theoretically and empirically demonstrate that the popular leave-one-out-based methods lack robustness, while the Shapley value behaves significantly better, but at a higher computational cost. Accordingly, we introduce an efficient fine-tuning-free approximation of the Shapley value (FreeShap) for instance attribution based on the neural tangent kernel. We empirically demonstrate that FreeShap outperforms other methods for instance attribution and other data-centric applications such as data removal, data selection, and wrong label detection, and further generalize our scale to large language models (LLMs). Our code is available at https://github.com/JTWang2000/FreeShap.