Abstract:For gradient-based machine learning (ML) methods commonly adopted in practice such as stochastic gradient descent, the de facto differential privacy (DP) technique is perturbing the gradients with random Gaussian noise. Data valuation attributes the ML performance to the training data and is widely used in privacy-aware applications that require enforcing DP such as data pricing, collaborative ML, and federated learning (FL). Can existing data valuation methods still be used when DP is enforced via gradient perturbations? We show that the answer is no with the default approach of injecting i.i.d.~random noise to the gradients because the estimation uncertainty of the data value estimation paradoxically linearly scales with more estimation budget, producing estimates almost like random guesses. To address this issue, we propose to instead inject carefully correlated noise to provably remove the linear scaling of estimation uncertainty w.r.t.~the budget. We also empirically demonstrate that our method gives better data value estimates on various ML tasks and is applicable to use cases including dataset valuation and~FL.
Abstract:Collaborative machine learning (CML) provides a promising paradigm for democratizing advanced technologies by enabling cost-sharing among participants. However, the potential for rent-seeking behaviors among parties can undermine such collaborations. Contract theory presents a viable solution by rewarding participants with models of varying accuracy based on their contributions. However, unlike monetary compensation, using models as rewards introduces unique challenges, particularly due to the stochastic nature of these rewards when contribution costs are privately held information. This paper formalizes the optimal contracting problem within CML and proposes a transformation that simplifies the non-convex optimization problem into one that can be solved through convex optimization algorithms. We conduct a detailed analysis of the properties that an optimal contract must satisfy when models serve as the rewards, and we explore the potential benefits and welfare implications of these contract-driven CML schemes through numerical experiments.
Abstract:Large Language Models still encounter substantial challenges in reasoning tasks, especially for smaller models, which many users may be restricted to due to resource constraints (e.g. GPU memory restrictions). Inference-time methods to boost LLM performance, such as prompting methods to invoke certain reasoning pathways in responses, have been shown effective in past works, though they largely rely on sequential queries. The ensemble method, which consists of multiple constituent models running in parallel, is a promising approach to achieving better inference-time performance, especially given recent developments that enabled significant speed-ups in LLM batch inference. In this work, we propose a novel, training-free LLM ensemble framework where a single LLM model is fed an optimized, diverse set of prompts in parallel, effectively producing an ensemble at inference time to achieve performance improvement in reasoning tasks. We empirically demonstrate that our method leads to significant gains on math reasoning tasks, e.g., on MATH, where our ensemble consisting of a few small models (e.g., three Qwen2-MATH-1.5B-it models) can outperform a larger model (e.g., Qwen2-MATH-7B-it).
Abstract:We propose a framework for adaptive data-centric collaborative learning among self-interested agents, coordinated by an arbiter. Designed to handle the incremental nature of real-world data, the framework operates in an online manner: at each step, the arbiter collects a batch of data from agents, trains a machine learning model, and provides each agent with a distinct model reflecting its data contributions. This setup establishes a feedback loop where shared data influence model updates, and the resulting models guide future data-sharing strategies. Agents evaluate and partition their data, selecting a partition to share using a stochastic parameterized policy optimized via policy gradient methods to optimize the utility of the received model as defined by agent-specific evaluation functions. On the arbiter side, the expected loss function over the true data distribution is optimized, incorporating agent-specific weights to account for distributional differences arising from diverse sources and selective sharing. A bilevel optimization algorithm jointly learns the model parameters and agent-specific weights. Mean-zero noise, computed using a distortion function that adjusts these agent-specific weights, is introduced to generate distinct agent-specific models, promoting valuable data sharing without requiring separate training. Our framework is underpinned by non-asymptotic analyses, ensuring convergence of the agent-side policy optimization to an approximate stationary point of the evaluation functions and convergence of the arbiter-side optimization to an approximate stationary point of the expected loss function.
Abstract:Data valuation is a class of techniques for quantitatively assessing the value of data for applications like pricing in data marketplaces. Existing data valuation methods define a value for a discrete dataset. However, in many use cases, users are interested in not only the value of the dataset, but that of the distribution from which the dataset was sampled. For example, consider a buyer trying to evaluate whether to purchase data from different vendors. The buyer may observe (and compare) only a small preview sample from each vendor, to decide which vendor's data distribution is most useful to the buyer and purchase. The core question is how should we compare the values of data distributions from their samples? Under a Huber characterization of the data heterogeneity across vendors, we propose a maximum mean discrepancy (MMD)-based valuation method which enables theoretically principled and actionable policies for comparing data distributions from samples. We empirically demonstrate that our method is sample-efficient and effective in identifying valuable data distributions against several existing baselines, on multiple real-world datasets (e.g., network intrusion detection, credit card fraud detection) and downstream applications (classification, regression).
Abstract:Large Language Models (LLMs) have become indispensable in numerous real-world applications. Unfortunately, fine-tuning these models at scale, especially in federated settings where data privacy and communication efficiency are critical, presents significant challenges. Existing methods often resort to parameter-efficient fine-tuning (PEFT) to mitigate communication overhead, but this typically comes at the cost of model accuracy. To address these limitations, we propose federated full-parameter tuning at scale for LLMs (Ferret), the first first-order method with shared randomness to enable scalable full-parameter tuning of LLMs across decentralized data sources while maintaining competitive model accuracy. Ferret accomplishes this through three aspects: (1) it employs widely applied first-order methods for efficient local updates; (2) it projects these updates into a low-dimensional space to considerably reduce communication overhead; and (3) it reconstructs local updates from this low-dimensional space with shared randomness to facilitate effective full-parameter global aggregation, ensuring fast convergence and competitive final performance. Our rigorous theoretical analyses and insights along with extensive experiments, show that Ferret significantly enhances the scalability of existing federated full-parameter tuning approaches by achieving high computational efficiency, reduced communication overhead, and fast convergence, all while maintaining competitive model accuracy. Our implementation is available at https://github.com/allen4747/Ferret.
Abstract:This paper considers a novel online fair division problem involving multiple agents in which a learner observes an indivisible item that has to be irrevocably allocated to one of the agents while satisfying a fairness and efficiency constraint. Existing algorithms assume a small number of items with a sufficiently large number of copies, which ensures a good utility estimation for all item-agent pairs. However, such an assumption may not hold in many real-life applications, e.g., an online platform that has a large number of users (items) who only use the platform's service providers (agents) a few times (a few copies of items), which makes it difficult to estimate the utility for all item-agent pairs. To overcome this challenge, we model the online fair division problem using contextual bandits, assuming the utility is an unknown function of the item-agent features. We then propose algorithms for online fair division with sub-linear regret guarantees. Our experimental results also verify the different performance aspects of the proposed algorithms.
Abstract:Existing sample-based methods, like influence functions and representer points, measure the importance of a training point by approximating the effect of its removal from training. As such, they are skewed towards outliers and points that are very close to the decision boundaries. The explanations provided by these methods are often static and not specific enough for different test points. In this paper, we propose a method to generate an explanation in the form of support spectrums which are based on two main ideas: the support sets and a global-to-local importance measure. The support set is the set of training points, in the predicted class, that ``lie in between'' the test point and training points in the other classes. They indicate how well the test point can be distinguished from the points not in the predicted class. The global-to-local importance measure is obtained by decoupling existing methods into the global and local components which are then used to select the points in the support set. Using this method, we are able to generate explanations that are tailored to specific test points. In the experiments, we show the effectiveness of the method in image classification and text generation tasks.
Abstract:Contextual dueling bandit is used to model the bandit problems, where a learner's goal is to find the best arm for a given context using observed noisy preference feedback over the selected arms for the past contexts. However, existing algorithms assume the reward function is linear, which can be complex and non-linear in many real-life applications like online recommendations or ranking web search results. To overcome this challenge, we use a neural network to estimate the reward function using preference feedback for the previously selected arms. We propose upper confidence bound- and Thompson sampling-based algorithms with sub-linear regret guarantees that efficiently select arms in each round. We then extend our theoretical results to contextual bandit problems with binary feedback, which is in itself a non-trivial contribution. Experimental results on the problem instances derived from synthetic datasets corroborate our theoretical results.
Abstract:Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established. Therefore, understanding how LLMs reason and make decisions is crucial for their safe deployment. This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt. Leveraging the insight that LLMs learn to infer latent concepts during pretraining, we propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty. We show that the uncertainty decreases as the prompt's informativeness increases, similar to epistemic uncertainty. Our detailed experimental results on real datasets validate our proposed model.