Abstract:This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs). We start by making the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs, and yet it receives disproportionally low attention from the research community. We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization. In each scenario, we underscore the importance of data, highlight promising research directions, and articulate the potential impacts on the research community and, where applicable, the society as a whole. For instance, we advocate for a suite of data-centric benchmarks tailored to the scale and complexity of data for LLMs. These benchmarks can be used to develop new data curation methods and document research efforts and results, which can help promote openness and transparency in AI and LLM research.
Abstract:The increasing complexity of foundational models underscores the necessity for explainability, particularly for fine-tuning, the most widely used training method for adapting models to downstream tasks. Instance attribution, one type of explanation, attributes the model prediction to each training example by an instance score. However, the robustness of instance scores, specifically towards dataset resampling, has been overlooked. To bridge this gap, we propose a notion of robustness on the sign of the instance score. We theoretically and empirically demonstrate that the popular leave-one-out-based methods lack robustness, while the Shapley value behaves significantly better, but at a higher computational cost. Accordingly, we introduce an efficient fine-tuning-free approximation of the Shapley value (FreeShap) for instance attribution based on the neural tangent kernel. We empirically demonstrate that FreeShap outperforms other methods for instance attribution and other data-centric applications such as data removal, data selection, and wrong label detection, and further generalize our scale to large language models (LLMs). Our code is available at https://github.com/JTWang2000/FreeShap.
Abstract:The impressive performances of large language models (LLMs) and their immense potential for commercialization have given rise to serious concerns over the intellectual property (IP) of their training data. In particular, the synthetic texts generated by LLMs may infringe the IP of the data being used to train the LLMs. To this end, it is imperative to be able to (a) identify the data provider who contributed to the generation of a synthetic text by an LLM (source attribution) and (b) verify whether the text data from a data provider has been used to train an LLM (data provenance). In this paper, we show that both problems can be solved by watermarking, i.e., by enabling an LLM to generate synthetic texts with embedded watermarks that contain information about their source(s). We identify the key properties of such watermarking frameworks (e.g., source attribution accuracy, robustness against adversaries), and propose a WAtermarking for Source Attribution (WASA) framework that satisfies these key properties due to our algorithmic designs. Our WASA framework enables an LLM to learn an accurate mapping from the texts of different data providers to their corresponding unique watermarks, which sets the foundation for effective source attribution (and hence data provenance). Extensive empirical evaluations show that our WASA framework achieves effective source attribution and data provenance.