Abstract:A fundamental issue in deep learning has been adversarial robustness. As these systems have scaled, such issues have persisted. Currently, large language models (LLMs) with billions of parameters suffer from adversarial attacks just like their earlier, smaller counterparts. However, the threat models have changed. Previously, having gray-box access, where input embeddings or output logits/probabilities were visible to the user, might have been reasonable. However, with the introduction of closed-source models, no information about the model is available apart from the generated output. This means that current black-box attacks can only utilize the final prediction to detect if an attack is successful. In this work, we investigate and demonstrate the potential of attack guidance, akin to using output probabilities, while having only black-box access in a classification setting. This is achieved through the ability to elicit confidence from the model. We empirically show that the elicited confidence is calibrated and not hallucinated for current LLMs. By minimizing the elicited confidence, we can therefore increase the likelihood of misclassification. Our new proposed paradigm demonstrates promising state-of-the-art results on three datasets across two models (LLaMA-3-8B-Instruct and Mistral-7B-Instruct-V0.3) when comparing our technique to existing hard-label black-box attack methods that introduce word-level substitutions.
Abstract:Multimodal Large Language Models (MLLMs) still struggle with hallucinations despite their impressive capabilities. Recent studies have attempted to mitigate this by applying Direct Preference Optimization (DPO) to multimodal scenarios using preference pairs from text-based responses. However, our analysis of representation distributions reveals that multimodal DPO struggles to align image and text representations and to distinguish between hallucinated and non-hallucinated descriptions. To address these challenges, in this work, we propose a Cross-modal Hierarchical Direct Preference Optimization (CHiP) to address these limitations. We introduce a visual preference optimization module within the DPO framework, enabling MLLMs to learn from both textual and visual preferences simultaneously. Furthermore, we propose a hierarchical textual preference optimization module that allows the model to capture preferences at multiple granular levels, including response, segment, and token levels. We evaluate CHiP through both quantitative and qualitative analyses, with results across multiple benchmarks demonstrating its effectiveness in reducing hallucinations. On the Object HalBench dataset, CHiP outperforms DPO in hallucination reduction, achieving improvements of 52.7% and 55.5% relative points based on the base model Muffin and LLaVA models, respectively. We make all our datasets and code publicly available: https://github.com/LVUGAI/CHiP.
Abstract:Federated learning (FL) has attracted considerable interest in the medical domain due to its capacity to facilitate collaborative model training while maintaining data privacy. However, conventional FL methods typically necessitate multiple communication rounds, leading to significant communication overhead and delays, especially in environments with limited bandwidth. One-shot federated learning addresses these issues by conducting model training and aggregation in a single communication round, thereby reducing communication costs while preserving privacy. Among these, one-shot federated ensemble learning combines independently trained client models using ensemble techniques such as voting, further boosting performance in non-IID data scenarios. On the other hand, existing machine learning methods in healthcare predominantly use unimodal data (e.g., medical images or textual reports), which restricts their diagnostic accuracy and comprehensiveness. Therefore, the integration of multi-modal data is proposed to address these shortcomings. In this paper, we introduce FedMME, an innovative one-shot multi-modal federated ensemble learning framework that utilizes multi-modal data for medical image analysis. Specifically, FedMME capitalizes on vision large language models to produce textual reports from medical images, employs a BERT model to extract textual features from these reports, and amalgamates these features with visual features to improve diagnostic accuracy. Experimental results show that our method demonstrated superior performance compared to existing one-shot federated learning methods in healthcare scenarios across four datasets with various data distributions. For instance, it surpasses existing one-shot federated learning approaches by more than 17.5% in accuracy on the RSNA dataset when applying a Dirichlet distribution with ($\alpha$ = 0.3).
Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks. However, they can be easily misled by unfaithful arguments during conversations, even when their original statements are correct. To this end, we investigate the problem of maintaining faithful integrity in LLMs. This involves ensuring that LLMs adhere to their faithful statements in the face of opposing arguments and are able to correct their incorrect statements when presented with faithful arguments. In this work, we propose a novel framework, named Alignment for Faithful Integrity with Confidence Estimation (AFICE), which aims to align the LLM responses with faithful integrity. Specifically, AFICE first designs a Bilateral Confidence Estimation (BCE) approach for estimating the uncertainty of each response generated by the LLM given a specific context, which simultaneously estimate the model's confidence to the question based on the internal states during decoding as well as to the answer based on cumulative probability ratios. With the BCE, we construct a conversational preference dataset composed of context, original statement, and argument, which is adopted for aligning the LLM for faithful integrity using Direct Preference Optimization (DPO). Extensive experimental results on a wide range of benchmarks demonstrate significant improvements in the LLM's ability to maintain faithful responses when encountering opposing arguments, ensuring both the practical utility and trustworthiness of LLMs in complex interactive settings. Code and data will be released via https://github.com/zhaoy777/AFICE.git
Abstract:In the rapidly evolving field of Artificial Intelligence Generated Content (AIGC), one of the key challenges is distinguishing AI-synthesized images from natural images. Despite the remarkable capabilities of advanced AI generative models in producing visually compelling images, significant discrepancies remain when these images are compared to natural ones. To systematically investigate and quantify these discrepancies, we introduce an AI-Natural Image Discrepancy Evaluation benchmark aimed at addressing the critical question: \textit{how far are AI-generated images (AIGIs) from truly realistic images?} We have constructed a large-scale multimodal dataset, the Distinguishing Natural and AI-generated Images (DNAI) dataset, which includes over 440,000 AIGI samples generated by 8 representative models using both unimodal and multimodal prompts, such as Text-to-Image (T2I), Image-to-Image (I2I), and Text \textit{vs.} Image-to-Image (TI2I). Our fine-grained assessment framework provides a comprehensive evaluation of the DNAI dataset across five key dimensions: naive visual feature quality, semantic alignment in multimodal generation, aesthetic appeal, downstream task applicability, and coordinated human validation. Extensive evaluation results highlight significant discrepancies across these dimensions, underscoring the necessity of aligning quantitative metrics with human judgment to achieve a holistic understanding of AI-generated image quality. Code is available at \href{https://github.com/ryliu68/ANID}{https://github.com/ryliu68/ANID}.
Abstract:Although large language models (LLMs) store vast amount of knowledge in their parameters, they still have limitations in the memorization and utilization of certain knowledge, leading to undesired behaviors such as generating untruthful and inaccurate responses. This highlights the critical need to understand the knowledge boundary of LLMs, a concept that remains inadequately defined in existing research. In this survey, we propose a comprehensive definition of the LLM knowledge boundary and introduce a formalized taxonomy categorizing knowledge into four distinct types. Using this foundation, we systematically review the field through three key lenses: the motivation for studying LLM knowledge boundaries, methods for identifying these boundaries, and strategies for mitigating the challenges they present. Finally, we discuss open challenges and potential research directions in this area. We aim for this survey to offer the community a comprehensive overview, facilitate access to key issues, and inspire further advancements in LLM knowledge research.
Abstract:Large Language Models still encounter substantial challenges in reasoning tasks, especially for smaller models, which many users may be restricted to due to resource constraints (e.g. GPU memory restrictions). Inference-time methods to boost LLM performance, such as prompting methods to invoke certain reasoning pathways in responses, have been shown effective in past works, though they largely rely on sequential queries. The ensemble method, which consists of multiple constituent models running in parallel, is a promising approach to achieving better inference-time performance, especially given recent developments that enabled significant speed-ups in LLM batch inference. In this work, we propose a novel, training-free LLM ensemble framework where a single LLM model is fed an optimized, diverse set of prompts in parallel, effectively producing an ensemble at inference time to achieve performance improvement in reasoning tasks. We empirically demonstrate that our method leads to significant gains on math reasoning tasks, e.g., on MATH, where our ensemble consisting of a few small models (e.g., three Qwen2-MATH-1.5B-it models) can outperform a larger model (e.g., Qwen2-MATH-7B-it).
Abstract:To equip artificial intelligence with a comprehensive understanding towards a temporal world, video and 4D panoptic scene graph generation abstracts visual data into nodes to represent entities and edges to capture temporal relations. Existing methods encode entity masks tracked across temporal dimensions (mask tubes), then predict their relations with temporal pooling operation, which does not fully utilize the motion indicative of the entities' relation. To overcome this limitation, we introduce a contrastive representation learning framework that focuses on motion pattern for temporal scene graph generation. Firstly, our framework encourages the model to learn close representations for mask tubes of similar subject-relation-object triplets. Secondly, we seek to push apart mask tubes from their temporally shuffled versions. Moreover, we also learn distant representations for mask tubes belonging to the same video but different triplets. Extensive experiments show that our motion-aware contrastive framework significantly improves state-of-the-art methods on both video and 4D datasets.
Abstract:Temporal grounding, which localizes video moments related to a natural language query, is a core problem of vision-language learning and video understanding. To encode video moments of varying lengths, recent methods employ a multi-level structure known as a feature pyramid. In this structure, lower levels concentrate on short-range video moments, while higher levels address long-range moments. Because higher levels experience downsampling to accommodate increasing moment length, their capacity to capture information is reduced and consequently leads to degraded information in moment representations. To resolve this problem, we propose a contrastive learning framework to capture salient semantics among video moments. Our key methodology is to leverage samples from the feature space emanating from multiple stages of the video encoder itself requiring neither data augmentation nor online memory banks to obtain positive and negative samples. To enable such an extension, we introduce a sampling process to draw multiple video moments corresponding to a common query. Subsequently, by utilizing these moments' representations across video encoder layers, we instantiate a novel form of multi-scale and cross-scale contrastive learning that links local short-range video moments with global long-range video moments. Extensive experiments demonstrate the effectiveness of our framework for not only long-form but also short-form video grounding.
Abstract:Large language models (LLMs) are effective at capturing complex, valuable conceptual representations from textual data for a wide range of real-world applications. However, in fields like Intelligent Fault Diagnosis (IFD), incorporating additional sensor data-such as vibration signals, temperature readings, and operational metrics-is essential but it is challenging to capture such sensor data information within traditional text corpora. This study introduces a novel IFD approach by effectively adapting LLMs to numerical data inputs for identifying various machine faults from time-series sensor data. We propose FD-LLM, an LLM framework specifically designed for fault diagnosis by formulating the training of the LLM as a multi-class classification problem. We explore two methods for encoding vibration signals: the first method uses a string-based tokenization technique to encode vibration signals into text representations, while the second extracts statistical features from both the time and frequency domains as statistical summaries of each signal. We assess the fault diagnosis capabilities of four open-sourced LLMs based on the FD-LLM framework, and evaluate the models' adaptability and generalizability under various operational conditions and machine components, namely for traditional fault diagnosis, cross-operational conditions, and cross-machine component settings. Our results show that LLMs such as Llama3 and Llama3-instruct demonstrate strong fault detection capabilities and significant adaptability across different operational conditions, outperforming state-of-the-art deep learning (DL) approaches in many cases.