Abstract:The development of Multimodal Large Language Models (MLLMs) has seen significant advancements. However, the quantity and quality of multimodal instruction data have emerged as significant bottlenecks in their progress. Manually creating multimodal instruction data is both time-consuming and inefficient, posing challenges in producing instructions of high complexity. Moreover, distilling instruction data from black-box commercial models (e.g., GPT-4o, GPT-4V) often results in simplistic instruction data, which constrains performance to that of these models. The challenge of curating diverse and complex instruction data remains substantial. We propose MMEvol, a novel multimodal instruction data evolution framework that combines fine-grained perception evolution, cognitive reasoning evolution, and interaction evolution. This iterative approach breaks through data quality bottlenecks to generate a complex and diverse image-text instruction dataset, thereby empowering MLLMs with enhanced capabilities. Beginning with an initial set of instructions, SEED-163K, we utilize MMEvol to systematically broadens the diversity of instruction types, integrates reasoning steps to enhance cognitive capabilities, and extracts detailed information from images to improve visual understanding and robustness. To comprehensively evaluate the effectiveness of our data, we train LLaVA-NeXT using the evolved data and conduct experiments across 13 vision-language tasks. Compared to the baseline trained with seed data, our approach achieves an average accuracy improvement of 3.1 points and reaches state-of-the-art (SOTA) performance on 9 of these tasks.
Abstract:Unsupervised out-of-distribution (U-OOD) detection is to identify OOD data samples with a detector trained solely on unlabeled in-distribution (ID) data. The likelihood function estimated by a deep generative model (DGM) could be a natural detector, but its performance is limited in some popular "hard" benchmarks, such as FashionMNIST (ID) vs. MNIST (OOD). Recent studies have developed various detectors based on DGMs to move beyond likelihood. However, despite their success on "hard" benchmarks, most of them struggle to consistently surpass or match the performance of likelihood on some "non-hard" cases, such as SVHN (ID) vs. CIFAR10 (OOD) where likelihood could be a nearly perfect detector. Therefore, we appeal for more attention to incremental effectiveness on likelihood, i.e., whether a method could always surpass or at least match the performance of likelihood in U-OOD detection. We first investigate the likelihood of variational DGMs and find its detection performance could be improved in two directions: i) alleviating latent distribution mismatch, and ii) calibrating the dataset entropy-mutual integration. Then, we apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration. The final method, named Resultant, combines these two directions for better incremental effectiveness compared to either technique alone. Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector while maintaining incremental effectiveness on likelihood in a wide range of tasks.
Abstract:Some recently developed code large language models (Code LLMs) have been pre-trained on repository-level code data (Repo-Code LLMs), enabling these models to recognize repository structures and utilize cross-file information for code completion. However, in real-world development scenarios, simply concatenating the entire code repository often exceeds the context window limits of these Repo-Code LLMs, leading to significant performance degradation. In this study, we conducted extensive preliminary experiments and analyses on six Repo-Code LLMs. The results indicate that maintaining the topological dependencies of files and increasing the code file content in the completion prompts can improve completion accuracy; pruning the specific implementations of functions in all dependent files does not significantly reduce the accuracy of completions. Based on these findings, we proposed a strategy named Hierarchical Context Pruning (HCP) to construct completion prompts with high informational code content. The HCP models the code repository at the function level, maintaining the topological dependencies between code files while removing a large amount of irrelevant code content, significantly reduces the input length for repository-level code completion. We applied the HCP strategy in experiments with six Repo-Code LLMs, and the results demonstrate that our proposed method can significantly enhance completion accuracy while substantially reducing the length of input. Our code and data are available at https://github.com/Hambaobao/HCP-Coder.
Abstract:The development of large language models (LLMs) has significantly advanced the emergence of large multimodal models (LMMs). While LMMs have achieved tremendous success by promoting the synergy between multimodal comprehension and creation, they often face challenges when confronted with out-of-distribution data. This is primarily due to their reliance on image encoders trained to encode images into task-relevant features, which may lead them to disregard irrelevant details. Delving into the modeling capabilities of diffusion models for images naturally prompts the question: Can diffusion models serve as the eyes of large language models for image perception? In this paper, we propose DEEM, a simple and effective approach that utilizes the generative feedback of diffusion models to align the semantic distributions of the image encoder. This addresses the drawbacks of previous methods that solely relied on image encoders like ViT, thereby enhancing the model's resilience against out-of-distribution samples and reducing visual hallucinations. Importantly, this is achieved without requiring additional training modules and with fewer training parameters. We extensively evaluated DEEM on both our newly constructed RobustVQA benchmark and another well-known benchmark, POPE, for object hallucination. Compared to the state-of-the-art interleaved content generation models, DEEM exhibits enhanced robustness and a superior capacity to alleviate model hallucinations while utilizing fewer trainable parameters, less pre-training data (10%), and a smaller base model size.
Abstract:The vulnerability of deep neural networks to imperceptible adversarial perturbations has attracted widespread attention. Inspired by the success of vision-language foundation models, previous efforts achieved zero-shot adversarial robustness by aligning adversarial visual features with text supervision. However, in practice, they are still unsatisfactory due to several issues, including heavy adaptation cost, suboptimal text supervision, and uncontrolled natural generalization capacity. In this paper, to address these issues, we propose a few-shot adversarial prompt framework where adapting input sequences with limited data makes significant adversarial robustness improvement. Specifically, we achieve this by providing adversarially correlated text supervision that is end-to-end learned from adversarial examples. We also propose a novel training objective that enhances the consistency of multi-modal features while encourages differentiated uni-modal features between natural and adversarial examples. The proposed framework gives access to learn adversarial text supervision, which provides superior cross-modal adversarial alignment and matches state-of-the-art zero-shot adversarial robustness with only 1% training data.
Abstract:Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage.In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e., parameters $\mathbf{w}$ are decomposed as $\mathbf{w}=\bm{\sigma}+\bm{\gamma}$. Afterward, the parameters $\bm{\sigma}$ are considered to memorize clean data, while the parameters $\bm{\gamma}$ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters $\bm{\sigma}$ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters $\bm{\gamma}$ are the opposite. In testing, only the parameters $\bm{\sigma}$ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method.
Abstract:Despite the success of the carefully-annotated benchmarks, the effectiveness of existing graph neural networks (GNNs) can be considerably impaired in practice when the real-world graph data is noisily labeled. Previous explorations in sample selection have been demonstrated as an effective way for robust learning with noisy labels, however, the conventional studies focus on i.i.d data, and when moving to non-iid graph data and GNNs, two notable challenges remain: (1) nodes located near topological class boundaries are very informative for classification but cannot be successfully distinguished by the heuristic sample selection. (2) there is no available measure that considers the graph topological information to promote sample selection in a graph. To address this dilemma, we propose a $\textit{Topological Sample Selection}$ (TSS) method that boosts the informative sample selection process in a graph by utilising topological information. We theoretically prove that our procedure minimizes an upper bound of the expected risk under target clean distribution, and experimentally show the superiority of our method compared with state-of-the-art baselines.
Abstract:Contemporary cutting-edge open-vocabulary segmentation approaches commonly rely on image-mask-text triplets, yet this restricted annotation is labour-intensive and encounters scalability hurdles in complex real-world scenarios. Although some methods are proposed to reduce the annotation cost with only text supervision, the incompleteness of supervision severely limits the versatility and performance. In this paper, we liberate the strict correspondence between masks and texts by using independent image-mask and image-text pairs, which can be easily collected respectively. With this unpaired mask-text supervision, we propose a new weakly-supervised open-vocabulary segmentation framework (Uni-OVSeg) that leverages confident pairs of mask predictions and entities in text descriptions. Using the independent image-mask and image-text pairs, we predict a set of binary masks and associate them with entities by resorting to the CLIP embedding space. However, the inherent noise in the correspondence between masks and entities poses a significant challenge when obtaining reliable pairs. In light of this, we advocate using the large vision-language model (LVLM) to refine text descriptions and devise a multi-scale ensemble to stablise the matching between masks and entities. Compared to text-only weakly-supervised methods, our Uni-OVSeg achieves substantial improvements of 15.5% mIoU on the ADE20K datasets, and even surpasses fully-supervised methods on the challenging PASCAL Context-459 dataset.
Abstract:Aligning large language models(LLMs) with human is a critical step in effectively utilizing their pre-trained capabilities across a wide array of language tasks. Current instruction tuning practices often rely on expanding dataset size without a clear strategy for ensuring data quality, which can inadvertently introduce noise and degrade model performance. To address this challenge, we introduce Nuggets, a novel and efficient methodology that employs one shot learning to select high-quality instruction data from expansive datasets. Nuggets assesses the potential of individual instruction examples to act as effective one shot examples, thereby identifying those that can significantly enhance diverse task performance. Nuggets utilizes a scoring system based on the impact of candidate examples on the perplexity of a diverse anchor set, facilitating the selection of the most beneficial data for instruction tuning. Through rigorous testing on two benchmarks, including MT-Bench and Alpaca-Eval, we demonstrate that instruction tuning with the top 1% of Nuggets-curated examples substantially outperforms conventional methods that use the full dataset. These findings advocate for a data selection paradigm that prioritizes quality, offering a more efficient pathway to align LLMs with humans.
Abstract:Deep learning has achieved remarkable success in graph-related tasks, yet this accomplishment heavily relies on large-scale high-quality annotated datasets. However, acquiring such datasets can be cost-prohibitive, leading to the practical use of labels obtained from economically efficient sources such as web searches and user tags. Unfortunately, these labels often come with noise, compromising the generalization performance of deep networks. To tackle this challenge and enhance the robustness of deep learning models against label noise in graph-based tasks, we propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE). The core idea of ERASE is to learn representations with error tolerance by maximizing coding rate reduction. Particularly, we introduce a decoupled label propagation method for learning representations. Before training, noisy labels are pre-corrected through structural denoising. During training, ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience, which significantly improves the generalization performance in node classification. The proposed method allows us to more effectively withstand errors caused by mislabeled nodes, thereby strengthening the robustness of deep networks in handling noisy graph data. Extensive experimental results show that our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability. Codes are released at https://github.com/eraseai/erase.