Abstract:In this paper, we propose a novel covariance information-assisted channel state information (CSI) feedback scheme for frequency-division duplex (FDD) massive multi-input multi-output (MIMO) systems. Unlike most existing CSI feedback schemes, which rely on instantaneous CSI only, the proposed CovNet leverages CSI covariance information to achieve high-performance CSI reconstruction, primarily consisting of convolutional neural network (CNN) and Transformer architecture. To efficiently utilize covariance information, we propose a covariance information processing procedure and sophisticatedly design the covariance information processing network (CIPN) to further process it. Moreover, the feed-forward network (FFN) in CovNet is designed to jointly leverage the 2D characteristics of the CSI matrix in the angle and delay domains. Simulation results demonstrate that the proposed network effectively leverages covariance information and outperforms the state-of-the-art (SOTA) scheme across the full compression ratio (CR) range.
Abstract:Traditional enterprises face significant challenges in processing business documents, where tasks like extracting transport references from invoices remain largely manual despite their crucial role in logistics operations. While Large Language Models offer potential automation, their direct application to specialized business domains often yields unsatisfactory results. We introduce Matrix (Memory-Augmented agent Training through Reasoning and Iterative eXploration), a novel paradigm that enables LLM agents to progressively build domain expertise through experience-driven memory refinement and iterative learning. To validate this approach, we collaborate with one of the world's largest logistics companies to create a dataset of Universal Business Language format invoice documents, focusing on the task of transport reference extraction. Experiments demonstrate that Matrix outperforms prompting a single LLM by 30.3%, vanilla LLM agent by 35.2%. We further analyze the metrics of the optimized systems and observe that the agent system requires less API calls, fewer costs and can analyze longer documents on average. Our methods establish a new approach to transform general-purpose LLMs into specialized business tools through systematic memory enhancement in document processing tasks.
Abstract:Representation learning on text-attributed graphs (TAGs) has attracted significant interest due to its wide-ranging real-world applications, particularly through Graph Neural Networks (GNNs). Traditional GNN methods focus on encoding the structural information of graphs, often using shallow text embeddings for node or edge attributes. This limits the model to understand the rich semantic information in the data and its reasoning ability for complex downstream tasks, while also lacking interpretability. With the rise of large language models (LLMs), an increasing number of studies are combining them with GNNs for graph representation learning and downstream tasks. While these approaches effectively leverage the rich semantic information in TAGs datasets, their main drawback is that they are only partially interpretable, which limits their application in critical fields. In this paper, we propose a verbalized graph representation learning (VGRL) method which is fully interpretable. In contrast to traditional graph machine learning models, which are usually optimized within a continuous parameter space, VGRL constrains this parameter space to be text description which ensures complete interpretability throughout the entire process, making it easier for users to understand and trust the decisions of the model. We conduct several studies to empirically evaluate the effectiveness of VGRL and we believe these method can serve as a stepping stone in graph representation learning.
Abstract:Signed Graph Neural Networks (SGNNs) have been shown to be effective in analyzing complex patterns in real-world situations where positive and negative links coexist. However, SGNN models suffer from poor explainability, which limit their adoptions in critical scenarios that require understanding the rationale behind predictions. To the best of our knowledge, there is currently no research work on the explainability of the SGNN models. Our goal is to address the explainability of decision-making for the downstream task of link sign prediction specific to signed graph neural networks. Since post-hoc explanations are not derived directly from the models, they may be biased and misrepresent the true explanations. Therefore, in this paper we introduce a Self-Explainable Signed Graph transformer (SE-SGformer) framework, which can not only outputs explainable information while ensuring high prediction accuracy. Specifically, We propose a new Transformer architecture for signed graphs and theoretically demonstrate that using positional encoding based on signed random walks has greater expressive power than current SGNN methods and other positional encoding graph Transformer-based approaches. We constructs a novel explainable decision process by discovering the $K$-nearest (farthest) positive (negative) neighbors of a node to replace the neural network-based decoder for predicting edge signs. These $K$ positive (negative) neighbors represent crucial information about the formation of positive (negative) edges between nodes and thus can serve as important explanatory information in the decision-making process. We conducted experiments on several real-world datasets to validate the effectiveness of SE-SGformer, which outperforms the state-of-the-art methods by improving 2.2\% prediction accuracy and 73.1\% explainablity accuracy in the best-case scenario.
Abstract:Leveraging multiple large language model (LLM) agents has shown to be a promising approach for tackling complex tasks, while the effective design of multiple agents for a particular application remains an art. It is thus intriguing to answer a critical question: Given a task, how can we build a team of LLM agents to solve it effectively? Our new adaptive team-building paradigm offers a flexible solution, realized through a novel agent design named Captain Agent. It dynamically forms and manages teams for each step of a task-solving process, utilizing nested group conversations and reflection to ensure diverse expertise and prevent stereotypical outputs. It allows for a flexible yet structured approach to problem-solving and can help reduce redundancy and enhance output diversity. A comprehensive evaluation across six real-world scenarios demonstrates that Captain Agent significantly outperforms existing multi-agent methods with 21.94% improvement in average accuracy, providing outstanding performance without requiring task-specific prompt engineering.
Abstract:Large Language Models (LLMs) have emerged as integral tools for reasoning, planning, and decision-making, drawing upon their extensive world knowledge and proficiency in language-related tasks. LLMs thus hold tremendous potential for natural language interaction within multi-agent systems to foster cooperation. However, LLM agents tend to over-report and comply with any instruction, which may result in information redundancy and confusion in multi-agent cooperation. Inspired by human organizations, this paper introduces a framework that imposes prompt-based organization structures on LLM agents to mitigate these problems. Through a series of experiments with embodied LLM agents and human-agent collaboration, our results highlight the impact of designated leadership on team efficiency, shedding light on the leadership qualities displayed by LLM agents and their spontaneous cooperative behaviors. Further, we harness the potential of LLMs to propose enhanced organizational prompts, via a Criticize-Reflect process, resulting in novel organization structures that reduce communication costs and enhance team efficiency.
Abstract:Researchers and practitioners have recently reframed powerful Large Language Models (LLMs) as agents, enabling them to automate complex tasks largely via the use of specialized functions. To facilitate the development of LLM agents, we present a novel paradigm of training LLM agents without modifying the LLM weights, which is particularly useful when the LLMs are difficult or inaccessible for modifications. Inspired by how humans continuously forge tools to adapt to real-world tasks, rather than change our biological structure to fit a static set of tools, we propose to progressively forge agent's functions to better solve the downstream tasks instead of modifying the LLM weights. By treating the functions as learnable `agent parameters' and leveraging the fundamental idea of model training in artificial intelligence, we develop AgentOptimizer that employs the LLM to update agents' functions and devise an agent training algorithm with two strategies, roll-back, and early-stop, to streamline the training process. With extensive experiments, we showcase that the agent training paradigm could significantly improve the performance of representative LLM agents in various downstream tasks. We also study the behavior of the agent training regarding aspects like the learning curve and domain transferability.
Abstract:Coreset selection is powerful in reducing computational costs and accelerating data processing for deep learning algorithms. It strives to identify a small subset from large-scale data, so that training only on the subset practically performs on par with full data. When coreset selection is applied in realistic scenes, under the premise that the identified coreset has achieved comparable model performance, practitioners regularly desire the identified coreset can have a size as small as possible for lower costs and greater acceleration. Motivated by this desideratum, for the first time, we pose the problem of "coreset selection with prioritized multiple objectives", in which the smallest coreset size under model performance constraints is explored. Moreover, to address this problem, an innovative method is proposed, which maintains optimization priority order over the model performance and coreset size, and efficiently optimizes them in the coreset selection procedure. Theoretically, we provide the convergence guarantee of the proposed method. Empirically, extensive experiments confirm its superiority compared with previous strategies, often yielding better model performance with smaller coreset sizes.
Abstract:In-context learning is a promising paradigm that utilizes in-context examples as prompts for the predictions of large language models. These prompts are crucial for achieving strong performance. However, since the prompts need to be sampled from a large volume of annotated examples, finding the right prompt may result in high annotation costs. To address this challenge, this paper introduces an influence-driven selective annotation method that aims to minimize annotation costs while improving the quality of in-context examples. The essence of our method is to select a pivotal subset from a large-scale unlabeled data pool to annotate for the subsequent sampling of prompts. Specifically, a directed graph is first constructed to represent unlabeled data. Afterward, the influence of candidate unlabeled subsets is quantified with a diffusion process. A simple yet effective greedy algorithm for unlabeled data selection is lastly introduced. It iteratively selects the data if it provides a maximum marginal gain with respect to quantified influence. Compared with previous efforts on selective annotations, our influence-driven method works in an end-to-end manner, avoids an intractable explicit balance between data diversity and representativeness, and enjoys theoretical support. Experiments confirm the superiority of the proposed method on various benchmarks, achieving better performance under lower time consumption during subset selection. The project page is available at https://skzhang1.github.io/IDEAL/.
Abstract:As Web technology continues to develop, it has become increasingly common to use data stored on different clients. At the same time, federated learning has received widespread attention due to its ability to protect data privacy when let models learn from data which is distributed across various clients. However, most existing works assume that the client's data are fixed. In real-world scenarios, such an assumption is most likely not true as data may be continuously generated and new classes may also appear. To this end, we focus on the practical and challenging federated class-incremental learning (FCIL) problem. For FCIL, the local and global models may suffer from catastrophic forgetting on old classes caused by the arrival of new classes and the data distributions of clients are non-independent and identically distributed (non-iid). In this paper, we propose a novel method called Federated Class-Incremental Learning with PrompTing (FCILPT). Given the privacy and limited memory, FCILPT does not use a rehearsal-based buffer to keep exemplars of old data. We choose to use prompts to ease the catastrophic forgetting of the old classes. Specifically, we encode the task-relevant and task-irrelevant knowledge into prompts, preserving the old and new knowledge of the local clients and solving the problem of catastrophic forgetting. We first sort the task information in the prompt pool in the local clients to align the task information on different clients before global aggregation. It ensures that the same task's knowledge are fully integrated, solving the problem of non-iid caused by the lack of classes among different clients in the same incremental task. Experiments on CIFAR-100, Mini-ImageNet, and Tiny-ImageNet demonstrate that FCILPT achieves significant accuracy improvements over the state-of-the-art methods.