University of California Santa Barbara
Abstract:This work studies linear bandits under a new notion of gap-adjusted misspecification and is an extension of Liu et al. (2023). When the underlying reward function is not linear, existing linear bandits work usually relies on a uniform misspecification parameter $\epsilon$ that measures the sup-norm error of the best linear approximation. This results in an unavoidable linear regret whenever $\epsilon > 0$. We propose a more natural model of misspecification which only requires the approximation error at each input $x$ to be proportional to the suboptimality gap at $x$. It captures the intuition that, for optimization problems, near-optimal regions should matter more and we can tolerate larger approximation errors in suboptimal regions. Quite surprisingly, we show that the classical LinUCB algorithm -- designed for the realizable case -- is automatically robust against such $\rho$-gap-adjusted misspecification with parameter $\rho$ diminishing at $O(1/(d \sqrt{\log T}))$. It achieves a near-optimal $O(\sqrt{T})$ regret for problems that the best-known regret is almost linear in time horizon $T$. We further advance this frontier by presenting a novel phased elimination-based algorithm whose gap-adjusted misspecification parameter $\rho = O(1/\sqrt{d})$ does not scale with $T$. This algorithm attains optimal $O(\sqrt{T})$ regret and is deployment-efficient, requiring only $\log T$ batches of exploration. It also enjoys an adaptive $O(\log T)$ regret when a constant suboptimality gap exists. Technically, our proof relies on a novel self-bounding argument that bounds the part of the regret due to misspecification by the regret itself, and a new inductive lemma that limits the misspecification error within the suboptimality gap for all valid actions in each batch selected by G-optimal design.
Abstract:This article reviews the recent advances on the statistical foundation of reinforcement learning (RL) in the offline and low-adaptive settings. We will start by arguing why offline RL is the appropriate model for almost any real-life ML problems, even if they have nothing to do with the recent AI breakthroughs that use RL. Then we will zoom into two fundamental problems of offline RL: offline policy evaluation (OPE) and offline policy learning (OPL). It may be surprising to people that tight bounds for these problems were not known even for tabular and linear cases until recently. We delineate the differences between worst-case minimax bounds and instance-dependent bounds. We also cover key algorithmic ideas and proof techniques behind near-optimal instance-dependent methods in OPE and OPL. Finally, we discuss the limitations of offline RL and review a burgeoning problem of \emph{low-adaptive exploration} which addresses these limitations by providing a sweet middle ground between offline and online RL.
Abstract:Model merging is an emerging technique that integrates multiple models fine-tuned on different tasks to create a versatile model that excels in multiple domains. This scheme, in the meantime, may open up backdoor attack opportunities where one single malicious model can jeopardize the integrity of the merged model. Existing works try to demonstrate the risk of such attacks by assuming substantial computational resources, focusing on cases where the attacker can fully fine-tune the pre-trained model. Such an assumption, however, may not be feasible given the increasing size of machine learning models. In practice where resources are limited and the attacker can only employ techniques like Low-Rank Adaptation (LoRA) to produce the malicious model, it remains unclear whether the attack can still work and pose threats. In this work, we first identify that the attack efficacy is significantly diminished when using LoRA for fine-tuning. Then, we propose LoBAM, a method that yields high attack success rate with minimal training resources. The key idea of LoBAM is to amplify the malicious weights in an intelligent way that effectively enhances the attack efficacy. We demonstrate that our design can lead to improved attack success rate through both theoretical proof and extensive empirical experiments across various model merging scenarios. Moreover, we show that our method has strong stealthiness and is difficult to detect.
Abstract:Numerical reasoning is pivotal in various artificial intelligence applications, such as natural language processing and recommender systems, where it involves using entities, relations, and attribute values (e.g., weight, length) to infer new factual relations (e.g., the Nile is longer than the Amazon). However, existing approaches encounter two critical challenges in modeling: (1) semantic relevance-the challenge of insufficiently capturing the necessary contextual interactions among entities, relations, and numerical attributes, often resulting in suboptimal inference; and (2) semantic ambiguity-the difficulty in accurately distinguishing ordinal relationships during numerical reasoning, which compromises the generation of high-quality samples and limits the effectiveness of contrastive learning. To address these challenges, we propose the novel Knowledge-Aware Attributes Embedding model (KAAE) for knowledge graph embeddings in numerical reasoning. Specifically, to overcome the challenge of semantic relevance, we introduce a Mixture-of-Experts-Knowledge-Aware (MoEKA) Encoder, designed to integrate the semantics of entities, relations, and numerical attributes into a joint semantic space. To tackle semantic ambiguity, we implement a new ordinal knowledge contrastive learning (OKCL) strategy that generates high-quality ordinal samples from the original data with the aid of ordinal relations, capturing fine-grained semantic nuances essential for accurate numerical reasoning. Experiments on three public benchmark datasets demonstrate the superior performance of KAAE across various attribute value distributions.
Abstract:Mobile devices such as smartphones, laptops, and tablets can often connect to multiple access networks (e.g., Wi-Fi, LTE, and 5G) simultaneously. Recent advancements facilitate seamless integration of these connections below the transport layer, enhancing the experience for apps that lack inherent multi-path support. This optimization hinges on dynamically determining the traffic distribution across networks for each device, a process referred to as \textit{multi-access traffic splitting}. This paper introduces \textit{NetworkGym}, a high-fidelity network environment simulator that facilitates generating multiple network traffic flows and multi-access traffic splitting. This simulator facilitates training and evaluating different RL-based solutions for the multi-access traffic splitting problem. Our initial explorations demonstrate that the majority of existing state-of-the-art offline RL algorithms (e.g. CQL) fail to outperform certain hand-crafted heuristic policies on average. This illustrates the urgent need to evaluate offline RL algorithms against a broader range of benchmarks, rather than relying solely on popular ones such as D4RL. We also propose an extension to the TD3+BC algorithm, named Pessimistic TD3 (PTD3), and demonstrate that it outperforms many state-of-the-art offline RL algorithms. PTD3's behavioral constraint mechanism, which relies on value-function pessimism, is theoretically motivated and relatively simple to implement.
Abstract:Transformer-based autoregressive sampling has been the major bottleneck for slowing down large language model inferences. One effective way to accelerate inference is \emph{Speculative Decoding}, which employs a small model to sample a sequence of draft tokens and a large model to validate. Given its empirical effectiveness, the theoretical understanding of Speculative Decoding is falling behind. This paper tackles this gap by conceptualizing the decoding problem via markov chain abstraction and studying the key properties, \emph{output quality and inference acceleration}, from a theoretical perspective. Our analysis covers the theoretical limits of speculative decoding, batch algorithms, and output quality-inference acceleration tradeoffs. Our results reveal the fundamental connections between different components of LLMs via total variation distances and show how they jointly affect the efficiency of decoding algorithms.
Abstract:The safe and effective deployment of Large Language Models (LLMs) involves a critical step called alignment, which ensures that the model's responses are in accordance with human preferences. Prevalent alignment techniques, such as DPO, PPO and their variants, align LLMs by changing the pre-trained model weights during a phase called post-training. While predominant, these post-training methods add substantial complexity before LLMs can be deployed. Inference-time alignment methods avoid the complex post-training step and instead bias the generation towards responses that are aligned with human preferences. The best-known inference-time alignment method, called Best-of-N, is as effective as the state-of-the-art post-training procedures. Unfortunately, Best-of-N requires vastly more resources at inference time than standard decoding strategies, which makes it computationally not viable. In this work, we introduce Speculative Rejection, a computationally-viable inference-time alignment algorithm. It generates high-scoring responses according to a given reward model, like Best-of-N does, while being between 16 to 32 times more computationally efficient.
Abstract:Recent advances in generative AI technologies like large language models have boosted the incorporation of AI assistance in writing workflows, leading to the rise of a new paradigm of human-AI co-creation in writing. To understand how people perceive writings that are produced under this paradigm, in this paper, we conduct an experimental study to understand whether and how the disclosure of the level and type of AI assistance in the writing process would affect people's perceptions of the writing on various aspects, including their evaluation on the quality of the writing and their ranking of different writings. Our results suggest that disclosing the AI assistance in the writing process, especially if AI has provided assistance in generating new content, decreases the average quality ratings for both argumentative essays and creative stories. This decrease in the average quality ratings often comes with an increased level of variations in different individuals' quality evaluations of the same writing. Indeed, factors such as an individual's writing confidence and familiarity with AI writing assistants are shown to moderate the impact of AI assistance disclosure on their writing quality evaluations. We also find that disclosing the use of AI assistance may significantly reduce the proportion of writings produced with AI's content generation assistance among the top-ranked writings.
Abstract:We explore how an AI model's decision fairness affects people's engagement with and perceived fairness of the model if they are subject to its decisions, but could repeatedly and strategically respond to these decisions. Two types of strategic responses are considered -- people could determine whether to continue interacting with the model, and whether to invest in themselves to improve their chance of future favorable decisions from the model. Via three human-subject experiments, we found that in decision subjects' strategic, repeated interactions with an AI model, the model's decision fairness does not change their willingness to interact with the model or to improve themselves, even when the model exhibits unfairness on salient protected attributes. However, decision subjects still perceive the AI model to be less fair when it systematically biases against their group, especially if the difficulty of improving one's qualification for the favorable decision is larger for the lowly-qualified people.
Abstract:This paper introduces MMMU-Pro, a robust version of the Massive Multi-discipline Multimodal Understanding and Reasoning (MMMU) benchmark. MMMU-Pro rigorously assesses multimodal models' true understanding and reasoning capabilities through a three-step process based on MMMU: (1) filtering out questions answerable by text-only models, (2) augmenting candidate options, and (3) introducing a vision-only input setting where questions are embedded within images. This setting challenges AI to truly "see" and "read" simultaneously, testing a fundamental human cognitive skill of seamlessly integrating visual and textual information. Results show that model performance is substantially lower on MMMU-Pro than on MMMU, ranging from 16.8% to 26.9% across models. We explore the impact of OCR prompts and Chain of Thought (CoT) reasoning, finding that OCR prompts have minimal effect while CoT generally improves performance. MMMU-Pro provides a more rigorous evaluation tool, closely mimicking real-world scenarios and offering valuable directions for future research in multimodal AI.