Abstract:Wireless sensor networks (WSNs) have become a promising solution for structural health monitoring (SHM), especially in hard-to-reach or remote locations. Battery-powered WSNs offer various advantages over wired systems, however limited battery life has always been one of the biggest obstacles in practical use of the WSNs, regardless of energy harvesting methods. While various methods have been studied for battery health management, existing methods exclusively aim to extend lifetime of individual batteries, lacking a system level view. A consequence of applying such methods is that batteries in a WSN tend to fail at different times, posing significant difficulty on planning and scheduling of battery replacement trip. This study investigate a deep reinforcement learning (DRL) method for active battery degradation management by optimizing duty cycle of WSNs at the system level. This active management strategy effectively reduces earlier failure of battery individuals which enable group replacement without sacrificing WSN performances. A simulated environment based on a real-world WSN setup was developed to train a DRL agent and learn optimal duty cycle strategies. The performance of the strategy was validated in a long-term setup with various network sizes, demonstrating its efficiency and scalability.
Abstract:Empathy is fundamental to human interactions, yet it remains unclear whether embodied agents can provide human-like empathetic support. Existing works have studied agents' tasks solving and social interactions abilities, but whether agents can understand empathetic needs and conduct empathetic behaviors remains overlooked. To address this, we introduce EmpathyAgent, the first benchmark to evaluate and enhance agents' empathetic actions across diverse scenarios. EmpathyAgent contains 10,000 multimodal samples with corresponding empathetic task plans and three different challenges. To systematically evaluate the agents' empathetic actions, we propose an empathy-specific evaluation suite that evaluates the agents' empathy process. We benchmark current models and found that exhibiting empathetic actions remains a significant challenge. Meanwhile, we train Llama3-8B using EmpathyAgent and find it can potentially enhance empathetic behavior. By establishing a standard benchmark for evaluating empathetic actions, we hope to advance research in empathetic embodied agents. Our code and data are publicly available at https://github.com/xinyan-cxy/EmpathyAgent.
Abstract:Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
Abstract:In multi-speaker scenarios, leveraging spatial features is essential for enhancing target speech. While with limited microphone arrays, developing a compact multi-channel speech enhancement system remains challenging, especially in extremely low signal-to-noise ratio (SNR) conditions. To tackle this issue, we propose a triple-steering spatial selection method, a flexible framework that uses three steering vectors to guide enhancement and determine the enhancement range. Specifically, we introduce a causal-directed U-Net (CDUNet) model, which takes raw multi-channel speech and the desired enhancement width as inputs. This enables dynamic adjustment of steering vectors based on the target direction and fine-tuning of the enhancement region according to the angular separation between the target and interference signals. Our model with only a dual microphone array, excels in both speech quality and downstream task performance. It operates in real-time with minimal parameters, making it ideal for low-latency, on-device streaming applications.
Abstract:Multimodal Sentiment Analysis (MSA) leverages heterogeneous modalities, such as language, vision, and audio, to enhance the understanding of human sentiment. While existing models often focus on extracting shared information across modalities or directly fusing heterogeneous modalities, such approaches can introduce redundancy and conflicts due to equal treatment of all modalities and the mutual transfer of information between modality pairs. To address these issues, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework, which incorporates a feature disentanglement module to separate modality-shared and modality-specific information. To further reduce redundancy and enhance language-targeted features, four geometric measures are introduced to refine the disentanglement process. A Language-Focused Attractor (LFA) is further developed to strengthen language representation by leveraging complementary modality-specific information through a language-guided cross-attention mechanism. The framework also employs hierarchical predictions to improve overall accuracy. Extensive experiments on two popular MSA datasets, CMU-MOSI and CMU-MOSEI, demonstrate the significant performance gains achieved by the proposed DLF framework. Comprehensive ablation studies further validate the effectiveness of the feature disentanglement module, language-focused attractor, and hierarchical predictions. Our code is available at https://github.com/pwang322/DLF.
Abstract:Numerical reasoning is pivotal in various artificial intelligence applications, such as natural language processing and recommender systems, where it involves using entities, relations, and attribute values (e.g., weight, length) to infer new factual relations (e.g., the Nile is longer than the Amazon). However, existing approaches encounter two critical challenges in modeling: (1) semantic relevance-the challenge of insufficiently capturing the necessary contextual interactions among entities, relations, and numerical attributes, often resulting in suboptimal inference; and (2) semantic ambiguity-the difficulty in accurately distinguishing ordinal relationships during numerical reasoning, which compromises the generation of high-quality samples and limits the effectiveness of contrastive learning. To address these challenges, we propose the novel Knowledge-Aware Attributes Embedding model (KAAE) for knowledge graph embeddings in numerical reasoning. Specifically, to overcome the challenge of semantic relevance, we introduce a Mixture-of-Experts-Knowledge-Aware (MoEKA) Encoder, designed to integrate the semantics of entities, relations, and numerical attributes into a joint semantic space. To tackle semantic ambiguity, we implement a new ordinal knowledge contrastive learning (OKCL) strategy that generates high-quality ordinal samples from the original data with the aid of ordinal relations, capturing fine-grained semantic nuances essential for accurate numerical reasoning. Experiments on three public benchmark datasets demonstrate the superior performance of KAAE across various attribute value distributions.
Abstract:Existing text-to-video (T2V) models often struggle with generating videos with sufficiently pronounced or complex actions. A key limitation lies in the text prompt's inability to precisely convey intricate motion details. To address this, we propose a novel framework, MVideo, designed to produce long-duration videos with precise, fluid actions. MVideo overcomes the limitations of text prompts by incorporating mask sequences as an additional motion condition input, providing a clearer, more accurate representation of intended actions. Leveraging foundational vision models such as GroundingDINO and SAM2, MVideo automatically generates mask sequences, enhancing both efficiency and robustness. Our results demonstrate that, after training, MVideo effectively aligns text prompts with motion conditions to produce videos that simultaneously meet both criteria. This dual control mechanism allows for more dynamic video generation by enabling alterations to either the text prompt or motion condition independently, or both in tandem. Furthermore, MVideo supports motion condition editing and composition, facilitating the generation of videos with more complex actions. MVideo thus advances T2V motion generation, setting a strong benchmark for improved action depiction in current video diffusion models. Our project page is available at https://mvideo-v1.github.io/.
Abstract:Cross-lingual cross-modal retrieval (CCR) aims to retrieve visually relevant content based on non-English queries, without relying on human-labeled cross-modal data pairs during training. One popular approach involves utilizing machine translation (MT) to create pseudo-parallel data pairs, establishing correspondence between visual and non-English textual data. However, aligning their representations poses challenges due to the significant semantic gap between vision and text, as well as the lower quality of non-English representations caused by pre-trained encoders and data noise. To overcome these challenges, we propose LECCR, a novel solution that incorporates the multi-modal large language model (MLLM) to improve the alignment between visual and non-English representations. Specifically, we first employ MLLM to generate detailed visual content descriptions and aggregate them into multi-view semantic slots that encapsulate different semantics. Then, we take these semantic slots as internal features and leverage them to interact with the visual features. By doing so, we enhance the semantic information within the visual features, narrowing the semantic gap between modalities and generating local visual semantics for subsequent multi-level matching. Additionally, to further enhance the alignment between visual and non-English features, we introduce softened matching under English guidance. This approach provides more comprehensive and reliable inter-modal correspondences between visual and non-English features. Extensive experiments on four CCR benchmarks, \ie Multi30K, MSCOCO, VATEX, and MSR-VTT-CN, demonstrate the effectiveness of our proposed method. Code: \url{https://github.com/LiJiaBei-7/leccr}.
Abstract:Significant progress has been made in the field of Instruction-based Image Editing (IIE). However, evaluating these models poses a significant challenge. A crucial requirement in this field is the establishment of a comprehensive evaluation benchmark for accurately assessing editing results and providing valuable insights for its further development. In response to this need, we propose I2EBench, a comprehensive benchmark designed to automatically evaluate the quality of edited images produced by IIE models from multiple dimensions. I2EBench consists of 2,000+ images for editing, along with 4,000+ corresponding original and diverse instructions. It offers three distinctive characteristics: 1) Comprehensive Evaluation Dimensions: I2EBench comprises 16 evaluation dimensions that cover both high-level and low-level aspects, providing a comprehensive assessment of each IIE model. 2) Human Perception Alignment: To ensure the alignment of our benchmark with human perception, we conducted an extensive user study for each evaluation dimension. 3) Valuable Research Insights: By analyzing the advantages and disadvantages of existing IIE models across the 16 dimensions, we offer valuable research insights to guide future development in the field. We will open-source I2EBench, including all instructions, input images, human annotations, edited images from all evaluated methods, and a simple script for evaluating the results from new IIE models. The code, dataset and generated images from all IIE models are provided in github: https://github.com/cocoshe/I2EBench.
Abstract:With advancements in data availability and computing resources, Multimodal Large Language Models (MLLMs) have showcased capabilities across various fields. However, the quadratic complexity of the vision encoder in MLLMs constrains the resolution of input images. Most current approaches mitigate this issue by cropping high-resolution images into smaller sub-images, which are then processed independently by the vision encoder. Despite capturing sufficient local details, these sub-images lack global context and fail to interact with one another. To address this limitation, we propose a novel MLLM, INF-LLaVA, designed for effective high-resolution image perception. INF-LLaVA incorporates two innovative components. First, we introduce a Dual-perspective Cropping Module (DCM), which ensures that each sub-image contains continuous details from a local perspective and comprehensive information from a global perspective. Second, we introduce Dual-perspective Enhancement Module (DEM) to enable the mutual enhancement of global and local features, allowing INF-LLaVA to effectively process high-resolution images by simultaneously capturing detailed local information and comprehensive global context. Extensive ablation studies validate the effectiveness of these components, and experiments on a diverse set of benchmarks demonstrate that INF-LLaVA outperforms existing MLLMs. Code and pretrained model are available at https://github.com/WeihuangLin/INF-LLaVA.