Abstract:Cross-lingual cross-modal retrieval (CCR) aims to retrieve visually relevant content based on non-English queries, without relying on human-labeled cross-modal data pairs during training. One popular approach involves utilizing machine translation (MT) to create pseudo-parallel data pairs, establishing correspondence between visual and non-English textual data. However, aligning their representations poses challenges due to the significant semantic gap between vision and text, as well as the lower quality of non-English representations caused by pre-trained encoders and data noise. To overcome these challenges, we propose LECCR, a novel solution that incorporates the multi-modal large language model (MLLM) to improve the alignment between visual and non-English representations. Specifically, we first employ MLLM to generate detailed visual content descriptions and aggregate them into multi-view semantic slots that encapsulate different semantics. Then, we take these semantic slots as internal features and leverage them to interact with the visual features. By doing so, we enhance the semantic information within the visual features, narrowing the semantic gap between modalities and generating local visual semantics for subsequent multi-level matching. Additionally, to further enhance the alignment between visual and non-English features, we introduce softened matching under English guidance. This approach provides more comprehensive and reliable inter-modal correspondences between visual and non-English features. Extensive experiments on four CCR benchmarks, \ie Multi30K, MSCOCO, VATEX, and MSR-VTT-CN, demonstrate the effectiveness of our proposed method. Code: \url{https://github.com/LiJiaBei-7/leccr}.
Abstract:Temporal sentence grounding is a challenging task that aims to localize the moment spans relevant to a language description. Although recent DETR-based models have achieved notable progress by leveraging multiple learnable moment queries, they suffer from overlapped and redundant proposals, leading to inaccurate predictions. We attribute this limitation to the lack of task-related guidance for the learnable queries to serve a specific mode. Furthermore, the complex solution space generated by variable and open-vocabulary language descriptions exacerbates the optimization difficulty, making it harder for learnable queries to distinguish each other adaptively. To tackle this limitation, we present a Region-Guided TRansformer (RGTR) for temporal sentence grounding, which diversifies moment queries to eliminate overlapped and redundant predictions. Instead of using learnable queries, RGTR adopts a set of anchor pairs as moment queries to introduce explicit regional guidance. Each anchor pair takes charge of moment prediction for a specific temporal region, which reduces the optimization difficulty and ensures the diversity of the final predictions. In addition, we design an IoU-aware scoring head to improve proposal quality. Extensive experiments demonstrate the effectiveness of RGTR, outperforming state-of-the-art methods on QVHighlights, Charades-STA and TACoS datasets.
Abstract:Cross-lingual cross-modal retrieval has garnered increasing attention recently, which aims to achieve the alignment between vision and target language (V-T) without using any annotated V-T data pairs. Current methods employ machine translation (MT) to construct pseudo-parallel data pairs, which are then used to learn a multi-lingual and multi-modal embedding space that aligns visual and target-language representations. However, the large heterogeneous gap between vision and text, along with the noise present in target language translations, poses significant challenges in effectively aligning their representations. To address these challenges, we propose a general framework, Cross-Lingual to Cross-Modal (CL2CM), which improves the alignment between vision and target language using cross-lingual transfer. This approach allows us to fully leverage the merits of multi-lingual pre-trained models (e.g., mBERT) and the benefits of the same modality structure, i.e., smaller gap, to provide reliable and comprehensive semantic correspondence (knowledge) for the cross-modal network. We evaluate our proposed approach on two multilingual image-text datasets, Multi30K and MSCOCO, and one video-text dataset, VATEX. The results clearly demonstrate the effectiveness of our proposed method and its high potential for large-scale retrieval.
Abstract:Current research on cross-modal retrieval is mostly English-oriented, as the availability of a large number of English-oriented human-labeled vision-language corpora. In order to break the limit of non-English labeled data, cross-lingual cross-modal retrieval (CCR) has attracted increasing attention. Most CCR methods construct pseudo-parallel vision-language corpora via Machine Translation (MT) to achieve cross-lingual transfer. However, the translated sentences from MT are generally imperfect in describing the corresponding visual contents. Improperly assuming the pseudo-parallel data are correctly correlated will make the networks overfit to the noisy correspondence. Therefore, we propose Dual-view Curricular Optimal Transport (DCOT) to learn with noisy correspondence in CCR. In particular, we quantify the confidence of the sample pair correlation with optimal transport theory from both the cross-lingual and cross-modal views, and design dual-view curriculum learning to dynamically model the transportation costs according to the learning stage of the two views. Extensive experiments are conducted on two multilingual image-text datasets and one video-text dataset, and the results demonstrate the effectiveness and robustness of the proposed method. Besides, our proposed method also shows a good expansibility to cross-lingual image-text baselines and a decent generalization on out-of-domain data.
Abstract:Despite the recent developments in the field of cross-modal retrieval, there has been less research focusing on low-resource languages due to the lack of manually annotated datasets. In this paper, we propose a noise-robust cross-lingual cross-modal retrieval method for low-resource languages. To this end, we use Machine Translation (MT) to construct pseudo-parallel sentence pairs for low-resource languages. However, as MT is not perfect, it tends to introduce noise during translation, rendering textual embeddings corrupted and thereby compromising the retrieval performance. To alleviate this, we introduce a multi-view self-distillation method to learn noise-robust target-language representations, which employs a cross-attention module to generate soft pseudo-targets to provide direct supervision from the similarity-based view and feature-based view. Besides, inspired by the back-translation in unsupervised MT, we minimize the semantic discrepancies between origin sentences and back-translated sentences to further improve the noise robustness of the textual encoder. Extensive experiments are conducted on three video-text and image-text cross-modal retrieval benchmarks across different languages, and the results demonstrate that our method significantly improves the overall performance without using extra human-labeled data. In addition, equipped with a pre-trained visual encoder from a recent vision-and-language pre-training framework, i.e., CLIP, our model achieves a significant performance gain, showing that our method is compatible with popular pre-training models. Code and data are available at https://github.com/HuiGuanLab/nrccr.
Abstract:This paper aims for the task of text-to-video retrieval, where given a query in the form of a natural-language sentence, it is asked to retrieve videos which are semantically relevant to the given query, from a great number of unlabeled videos. The success of this task depends on cross-modal representation learning that projects both videos and sentences into common spaces for semantic similarity computation. In this work, we concentrate on video representation learning, an essential component for text-to-video retrieval. Inspired by the reading strategy of humans, we propose a Reading-strategy Inspired Visual Representation Learning (RIVRL) to represent videos, which consists of two branches: a previewing branch and an intensive-reading branch. The previewing branch is designed to briefly capture the overview information of videos, while the intensive-reading branch is designed to obtain more in-depth information. Moreover, the intensive-reading branch is aware of the video overview captured by the previewing branch. Such holistic information is found to be useful for the intensive-reading branch to extract more fine-grained features. Extensive experiments on three datasets are conducted, where our model RIVRL achieves a new state-of-the-art on TGIF and VATEX. Moreover, on MSR-VTT, our model using two video features shows comparable performance to the state-of-the-art using seven video features and even outperforms models pre-trained on the large-scale HowTo100M dataset.