Abstract:Semi-supervised learning has emerged as a widely adopted technique in the field of medical image segmentation. The existing works either focuses on the construction of consistency constraints or the generation of pseudo labels to provide high-quality supervisory signals, whose main challenge mainly comes from how to keep the continuous improvement of model capabilities. In this paper, we propose a simple yet effective semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation, whose goal is to generate high-fidelity pseudo labels by learning robust and diverse features in the training process. Specifically, our PMT employs a standard mean teacher to penalize the consistency of the current state and utilizes two sets of MT architectures for co-training. The two sets of MT architectures are individually updated for prolonged periods to maintain stable model diversity established through performance gaps generated by iteration differences. Additionally, a difference-driven alignment regularizer is employed to expedite the alignment of lagging models with the representation capabilities of leading models. Furthermore, a simple yet effective pseudo-label filtering algorithm is employed for facile evaluation of models and selection of high-fidelity pseudo-labels outputted when models are operating at high performance for co-training purposes. Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches across various dimensions. The code is available at https://github.com/Axi404/PMT.
Abstract:Homography estimation is the task of determining the transformation from an image pair. Our approach focuses on employing detector-free feature matching methods to address this issue. Previous work has underscored the importance of incorporating semantic information, however there still lacks an efficient way to utilize semantic information. Previous methods suffer from treating the semantics as a pre-processing, causing the utilization of semantics overly coarse-grained and lack adaptability when dealing with different tasks. In our work, we seek another way to use the semantic information, that is semantic-aware feature representation learning framework.Based on this, we propose SRMatcher, a new detector-free feature matching method, which encourages the network to learn integrated semantic feature representation.Specifically, to capture precise and rich semantics, we leverage the capabilities of recently popularized vision foundation models (VFMs) trained on extensive datasets. Then, a cross-images Semantic-aware Fusion Block (SFB) is proposed to integrate its fine-grained semantic features into the feature representation space. In this way, by reducing errors stemming from semantic inconsistencies in matching pairs, our proposed SRMatcher is able to deliver more accurate and realistic outcomes. Extensive experiments show that SRMatcher surpasses solid baselines and attains SOTA results on multiple real-world datasets. Compared to the previous SOTA approach GeoFormer, SRMatcher increases the area under the cumulative curve (AUC) by about 11\% on HPatches. Additionally, the SRMatcher could serve as a plug-and-play framework for other matching methods like LoFTR, yielding substantial precision improvement.
Abstract:Multi-Object Tracking MOT encompasses various tracking scenarios, each characterized by unique traits. Effective trackers should demonstrate a high degree of generalizability across diverse scenarios. However, existing trackers struggle to accommodate all aspects or necessitate hypothesis and experimentation to customize the association information motion and or appearance for a given scenario, leading to narrowly tailored solutions with limited generalizability. In this paper, we investigate the factors that influence trackers generalization to different scenarios and concretize them into a set of tracking scenario attributes to guide the design of more generalizable trackers. Furthermore, we propose a point-wise to instance-wise relation framework for MOT, i.e., GeneralTrack, which can generalize across diverse scenarios while eliminating the need to balance motion and appearance. Thanks to its superior generalizability, our proposed GeneralTrack achieves state-of-the-art performance on multiple benchmarks and demonstrates the potential for domain generalization. https://github.com/qinzheng2000/GeneralTrack.git
Abstract:Temporal sentence grounding is a challenging task that aims to localize the moment spans relevant to a language description. Although recent DETR-based models have achieved notable progress by leveraging multiple learnable moment queries, they suffer from overlapped and redundant proposals, leading to inaccurate predictions. We attribute this limitation to the lack of task-related guidance for the learnable queries to serve a specific mode. Furthermore, the complex solution space generated by variable and open-vocabulary language descriptions exacerbates the optimization difficulty, making it harder for learnable queries to distinguish each other adaptively. To tackle this limitation, we present a Region-Guided TRansformer (RGTR) for temporal sentence grounding, which diversifies moment queries to eliminate overlapped and redundant predictions. Instead of using learnable queries, RGTR adopts a set of anchor pairs as moment queries to introduce explicit regional guidance. Each anchor pair takes charge of moment prediction for a specific temporal region, which reduces the optimization difficulty and ensures the diversity of the final predictions. In addition, we design an IoU-aware scoring head to improve proposal quality. Extensive experiments demonstrate the effectiveness of RGTR, outperforming state-of-the-art methods on QVHighlights, Charades-STA and TACoS datasets.
Abstract:With the wide application of knowledge distillation between an ImageNet pre-trained teacher model and a learnable student model, industrial anomaly detection has witnessed a significant achievement in the past few years. The success of knowledge distillation mainly relies on how to keep the feature discrepancy between the teacher and student model, in which it assumes that: (1) the teacher model can jointly represent two different distributions for the normal and abnormal patterns, while (2) the student model can only reconstruct the normal distribution. However, it still remains a challenging issue to maintain these ideal assumptions in practice. In this paper, we propose a simple yet effective two-stage industrial anomaly detection framework, termed as AAND, which sequentially performs Anomaly Amplification and Normality Distillation to obtain robust feature discrepancy. In the first anomaly amplification stage, we propose a novel Residual Anomaly Amplification (RAA) module to advance the pre-trained teacher encoder. With the exposure of synthetic anomalies, it amplifies anomalies via residual generation while maintaining the integrity of pre-trained model. It mainly comprises a Matching-guided Residual Gate and an Attribute-scaling Residual Generator, which can determine the residuals' proportion and characteristic, respectively. In the second normality distillation stage, we further employ a reverse distillation paradigm to train a student decoder, in which a novel Hard Knowledge Distillation (HKD) loss is built to better facilitate the reconstruction of normal patterns. Comprehensive experiments on the MvTecAD, VisA, and MvTec3D-RGB datasets show that our method achieves state-of-the-art performance.
Abstract:Semi-supervised action recognition aims to improve spatio-temporal reasoning ability with a few labeled data in conjunction with a large amount of unlabeled data. Albeit recent advancements, existing powerful methods are still prone to making ambiguous predictions under scarce labeled data, embodied as the limitation of distinguishing different actions with similar spatio-temporal information. In this paper, we approach this problem by empowering the model two aspects of capability, namely discriminative spatial modeling and temporal structure modeling for learning discriminative spatio-temporal representations. Specifically, we propose an Adaptive Contrastive Learning~(ACL) strategy. It assesses the confidence of all unlabeled samples by the class prototypes of the labeled data, and adaptively selects positive-negative samples from a pseudo-labeled sample bank to construct contrastive learning. Additionally, we introduce a Multi-scale Temporal Learning~(MTL) strategy. It could highlight informative semantics from long-term clips and integrate them into the short-term clip while suppressing noisy information. Afterwards, both of these two new techniques are integrated in a unified framework to encourage the model to make accurate predictions. Extensive experiments on UCF101, HMDB51 and Kinetics400 show the superiority of our method over prior state-of-the-art approaches.
Abstract:Noisy label learning aims to learn robust networks under the supervision of noisy labels, which plays a critical role in deep learning. Existing work either conducts sample selection or label correction to deal with noisy labels during the model training process. In this paper, we design a simple yet effective sample selection framework, termed Two-Stream Sample Distillation (TSSD), for noisy label learning, which can extract more high-quality samples with clean labels to improve the robustness of network training. Firstly, a novel Parallel Sample Division (PSD) module is designed to generate a certain training set with sufficient reliable positive and negative samples by jointly considering the sample structure in feature space and the human prior in loss space. Secondly, a novel Meta Sample Purification (MSP) module is further designed to mine adequate semi-hard samples from the remaining uncertain training set by learning a strong meta classifier with extra golden data. As a result, more and more high-quality samples will be distilled from the noisy training set to train networks robustly in every iteration. Extensive experiments on four benchmark datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and Clothing-1M, show that our method has achieved state-of-the-art results over its competitors.
Abstract:Unsupervised person re-identification aims to retrieve images of a specified person without identity labels. Many recent unsupervised Re-ID approaches adopt clustering-based methods to measure cross-camera feature similarity to roughly divide images into clusters. They ignore the feature distribution discrepancy induced by camera domain gap, resulting in the unavoidable performance degradation. Camera information is usually available, and the feature distribution in the single camera usually focuses more on the appearance of the individual and has less intra-identity variance. Inspired by the observation, we introduce a \textbf{C}amera-\textbf{A}ware \textbf{L}abel \textbf{R}efinement~(CALR) framework that reduces camera discrepancy by clustering intra-camera similarity. Specifically, we employ intra-camera training to obtain reliable local pseudo labels within each camera, and then refine global labels generated by inter-camera clustering and train the discriminative model using more reliable global pseudo labels in a self-paced manner. Meanwhile, we develop a camera-alignment module to align feature distributions under different cameras, which could help deal with the camera variance further. Extensive experiments validate the superiority of our proposed method over state-of-the-art approaches. The code is accessible at https://github.com/leeBooMla/CALR.
Abstract:The crux of semi-supervised temporal action localization (SS-TAL) lies in excavating valuable information from abundant unlabeled videos. However, current approaches predominantly focus on building models that are robust to the error-prone target class (i.e, the predicted class with the highest confidence) while ignoring informative semantics within non-target classes. This paper approaches SS-TAL from a novel perspective by advocating for learning from non-target classes, transcending the conventional focus solely on the target class. The proposed approach involves partitioning the label space of the predicted class distribution into distinct subspaces: target class, positive classes, negative classes, and ambiguous classes, aiming to mine both positive and negative semantics that are absent in the target class, while excluding ambiguous classes. To this end, we first devise innovative strategies to adaptively select high-quality positive and negative classes from the label space, by modeling both the confidence and rank of a class in relation to those of the target class. Then, we introduce novel positive and negative losses designed to guide the learning process, pushing predictions closer to positive classes and away from negative classes. Finally, the positive and negative processes are integrated into a hybrid positive-negative learning framework, facilitating the utilization of non-target classes in both labeled and unlabeled videos. Experimental results on THUMOS14 and ActivityNet v1.3 demonstrate the superiority of the proposed method over prior state-of-the-art approaches.
Abstract:Pedestrian trajectory prediction is a crucial component in computer vision and robotics, but remains challenging due to the domain shift problem. Previous studies have tried to tackle this problem by leveraging a portion of the trajectory data from the target domain to adapt the model. However, such domain adaptation methods are impractical in real-world scenarios, as it is infeasible to collect trajectory data from all potential target domains. In this paper, we study a task named generalized pedestrian trajectory prediction, with the aim of generalizing the model to unseen domains without accessing their trajectories. To tackle this task, we introduce a Recurrent Aligned Network~(RAN) to minimize the domain gap through domain alignment. Specifically, we devise a recurrent alignment module to effectively align the trajectory feature spaces at both time-state and time-sequence levels by the recurrent alignment strategy.Furthermore, we introduce a pre-aligned representation module to combine social interactions with the recurrent alignment strategy, which aims to consider social interactions during the alignment process instead of just target trajectories. We extensively evaluate our method and compare it with state-of-the-art methods on three widely used benchmarks. The experimental results demonstrate the superior generalization capability of our method. Our work not only fills the gap in the generalization setting for practical pedestrian trajectory prediction but also sets strong baselines in this field.