Abstract:Robotic manipulation in real-world settings remains challenging, especially regarding robust generalization. Existing simulation platforms lack sufficient support for exploring how policies adapt to varied instructions and scenarios. Thus, they lag behind the growing interest in instruction-following foundation models like LLMs, whose adaptability is crucial yet remains underexplored in fair comparisons. To bridge this gap, we introduce GenManip, a realistic tabletop simulation platform tailored for policy generalization studies. It features an automatic pipeline via LLM-driven task-oriented scene graph to synthesize large-scale, diverse tasks using 10K annotated 3D object assets. To systematically assess generalization, we present GenManip-Bench, a benchmark of 200 scenarios refined via human-in-the-loop corrections. We evaluate two policy types: (1) modular manipulation systems integrating foundation models for perception, reasoning, and planning, and (2) end-to-end policies trained through scalable data collection. Results show that while data scaling benefits end-to-end methods, modular systems enhanced with foundation models generalize more effectively across diverse scenarios. We anticipate this platform to facilitate critical insights for advancing policy generalization in realistic conditions. Project Page: https://genmanip.axi404.top/.
Abstract:We propose Ming-Omni, a unified multimodal model capable of processing images, text, audio, and video, while demonstrating strong proficiency in both speech and image generation. Ming-Omni employs dedicated encoders to extract tokens from different modalities, which are then processed by Ling, an MoE architecture equipped with newly proposed modality-specific routers. This design enables a single model to efficiently process and fuse multimodal inputs within a unified framework, thereby facilitating diverse tasks without requiring separate models, task-specific fine-tuning, or structural redesign. Importantly, Ming-Omni extends beyond conventional multimodal models by supporting audio and image generation. This is achieved through the integration of an advanced audio decoder for natural-sounding speech and Ming-Lite-Uni for high-quality image generation, which also allow the model to engage in context-aware chatting, perform text-to-speech conversion, and conduct versatile image editing. Our experimental results showcase Ming-Omni offers a powerful solution for unified perception and generation across all modalities. Notably, our proposed Ming-Omni is the first open-source model we are aware of to match GPT-4o in modality support, and we release all code and model weights to encourage further research and development in the community.
Abstract:Due to adverse atmospheric and imaging conditions, natural images suffer from various degradation phenomena. Consequently, image restoration has emerged as a key solution and garnered substantial attention. Although recent Transformer architectures have demonstrated impressive success across various restoration tasks, their considerable model complexity poses significant challenges for both training and real-time deployment. Furthermore, instead of investigating the commonalities among different degradations, most existing restoration methods focus on modifying Transformer under limited restoration priors. In this work, we first review various degradation phenomena under multi-domain perspective, identifying common priors. Then, we introduce a novel restoration framework, which integrates multi-domain learning into Transformer. Specifically, in Token Mixer, we propose a Spatial-Wavelet-Fourier multi-domain structure that facilitates local-region-global multi-receptive field modeling to replace vanilla self-attention. Additionally, in Feed-Forward Network, we incorporate multi-scale learning to fuse multi-domain features at different resolutions. Comprehensive experimental results across ten restoration tasks, such as dehazing, desnowing, motion deblurring, defocus deblurring, rain streak/raindrop removal, cloud removal, shadow removal, underwater enhancement and low-light enhancement, demonstrate that our proposed model outperforms state-of-the-art methods and achieves a favorable trade-off among restoration performance, parameter size, computational cost and inference latency. The code is available at: https://github.com/deng-ai-lab/SWFormer.
Abstract:Distributed training methods are crucial for large language models (LLMs). However, existing distributed training methods often suffer from communication bottlenecks, stragglers, and limited elasticity. Local SGD methods have been proposed to address these issues, but their effectiveness remains limited to small-scale training due to additional memory overhead and lack of concerns on efficiency and stability. To tackle these issues, we propose EDiT, an innovative Efficient Distributed Training method that combines a tailored Local SGD approach with model sharding techniques to enhance large-scale training efficiency. EDiT performs layer-wise parameter synchronization during forward pass, reducing communication and memory overhead and enabling the overlap of computation and communication. Besides, EDiT employs a pseudo gradient penalty strategy to suppress loss spikes, which ensures training stability and improve performance. Additionally, we introduce A-EDiT, a fully asynchronous variant of EDiT that accommodates heterogeneous clusters. Building on EDiT/A-EDiT, we conduct a series of experiments to validate large-scale asynchronous training for LLMs, accompanied by comprehensive analyses. Experimental results demonstrate the superior performance of EDiT/A-EDiT, establishing them as robust solutions for distributed LLM training in diverse computational ecosystems.
Abstract:Semi-supervised learning has emerged as a widely adopted technique in the field of medical image segmentation. The existing works either focuses on the construction of consistency constraints or the generation of pseudo labels to provide high-quality supervisory signals, whose main challenge mainly comes from how to keep the continuous improvement of model capabilities. In this paper, we propose a simple yet effective semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation, whose goal is to generate high-fidelity pseudo labels by learning robust and diverse features in the training process. Specifically, our PMT employs a standard mean teacher to penalize the consistency of the current state and utilizes two sets of MT architectures for co-training. The two sets of MT architectures are individually updated for prolonged periods to maintain stable model diversity established through performance gaps generated by iteration differences. Additionally, a difference-driven alignment regularizer is employed to expedite the alignment of lagging models with the representation capabilities of leading models. Furthermore, a simple yet effective pseudo-label filtering algorithm is employed for facile evaluation of models and selection of high-fidelity pseudo-labels outputted when models are operating at high performance for co-training purposes. Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches across various dimensions. The code is available at https://github.com/Axi404/PMT.
Abstract:The physical layer authentication (PLA) is a promising technology which can enhance the access security of a massive number of devices in the near future. In this paper, we propose a reconfigurable intelligent surface (RIS)-assisted PLA system, in which the legitimate transmitter can customize the channel fingerprints during PLA by controlling the ON-OFF state of the RIS. Without loss of generality, we use the received signal strength (RSS) based spoofing detection approach to analyze the feasibility of the proposed architecture. Specifically, based on the RSS, we derive the statistical properties of PLA and give some interesting insights, which showcase that the RIS-assisted PLA is theoretically feasible. Then, we derive the optimal detection threshold to maximize the performance in the context of the presented performance metrics. Next, the actual feasibility of the proposed system is verified via proof-of-concept experiments on a RIS-assisted PLA prototype platform. The experiment results show that there are 3.5% and 76% performance improvements when the transmission sources are at different locations and at the same location, respectively.
Abstract:To enable meaningful robotic manipulation of objects in the real-world, 6D pose estimation is one of the critical aspects. Most existing approaches have difficulties to extend predictions to scenarios where novel object instances are continuously introduced, especially with heavy occlusions. In this work, we propose a few-shot pose estimation (FSPE) approach called SA6D, which uses a self-adaptive segmentation module to identify the novel target object and construct a point cloud model of the target object using only a small number of cluttered reference images. Unlike existing methods, SA6D does not require object-centric reference images or any additional object information, making it a more generalizable and scalable solution across categories. We evaluate SA6D on real-world tabletop object datasets and demonstrate that SA6D outperforms existing FSPE methods, particularly in cluttered scenes with occlusions, while requiring fewer reference images.
Abstract:Object-centric representations using slots have shown the advances towards efficient, flexible and interpretable abstraction from low-level perceptual features in a compositional scene. Current approaches randomize the initial state of slots followed by an iterative refinement. As we show in this paper, the random slot initialization significantly affects the accuracy of the final slot prediction. Moreover, current approaches require a predetermined number of slots from prior knowledge of the data, which limits the applicability in the real world. In our work, we initialize the slot representations with clustering algorithms conditioned on the perceptual input features. This requires an additional layer in the architecture to initialize the slots given the identified clusters. We design permutation invariant and permutation equivariant versions of this layer to enable the exchangeable slot representations after clustering. Additionally, we employ mean-shift clustering to automatically identify the number of slots for a given scene. We evaluate our method on object discovery and novel view synthesis tasks with various datasets. The results show that our method outperforms prior works consistently, especially for complex scenes.
Abstract:Wireless networks are vulnerable to physical layer spoofing attacks due to the wireless broadcast nature, thus, integrating communications and security (ICAS) is urgently needed for 6G endogenous security. In this letter, we propose an environment semantics enabled physical layer authentication network based on deep learning, namely EsaNet, to authenticate the spoofing from the underlying wireless protocol. Specifically, the frequency independent wireless channel fingerprint (FiFP) is extracted from the channel state information (CSI) of a massive multi-input multi-output (MIMO) system based on environment semantics knowledge. Then, we transform the received signal into a two-dimensional red green blue (RGB) image and apply the you only look once (YOLO), a single-stage object detection network, to quickly capture the FiFP. Next, a lightweight classification network is designed to distinguish the legitimate from the illegitimate users. Finally, the experimental results show that the proposed EsaNet can effectively detect physical layer spoofing attacks and is robust in time-varying wireless environments.
Abstract:Deep Neural Networks (DNNs) generalization is known to be closely related to the flatness of minima, leading to the development of Sharpness-Aware Minimization (SAM) for seeking flatter minima and better generalization. In this paper, we revisit the loss of SAM and propose a more general method, called WSAM, by incorporating sharpness as a regularization term. We prove its generalization bound through the combination of PAC and Bayes-PAC techniques, and evaluate its performance on various public datasets. The results demonstrate that WSAM achieves improved generalization, or is at least highly competitive, compared to the vanilla optimizer, SAM and its variants. The code is available at https://github.com/intelligent-machine-learning/dlrover/tree/master/atorch/atorch/optimizers.