Abstract:Image-based virtual try-on, widely used in online shopping, aims to generate images of a naturally dressed person conditioned on certain garments, providing significant research and commercial potential. A key challenge of try-on is to generate realistic images of the model wearing the garments while preserving the details of the garments. Previous methods focus on masking certain parts of the original model's standing image, and then inpainting on masked areas to generate realistic images of the model wearing corresponding reference garments, which treat the try-on task as an inpainting task. However, such implements require the user to provide a complete, high-quality standing image, which is user-unfriendly in practical applications. In this paper, we propose Try-On-Adapter (TOA), an outpainting paradigm that differs from the existing inpainting paradigm. Our TOA can preserve the given face and garment, naturally imagine the rest parts of the image, and provide flexible control ability with various conditions, e.g., garment properties and human pose. In the experiments, TOA shows excellent performance on the virtual try-on task even given relatively low-quality face and garment images in qualitative comparisons. Additionally, TOA achieves the state-of-the-art performance of FID scores 5.56 and 7.23 for paired and unpaired on the VITON-HD dataset in quantitative comparisons.
Abstract:Despite the burst of innovative methods for controlling the diffusion process, effectively controlling image styles in text-to-image generation remains a challenging task. Many adapter-based methods impose image representation conditions on the denoising process to accomplish image control. However these conditions are not aligned with the word embedding space, leading to interference between image and text control conditions and the potential loss of semantic information from the text prompt. Addressing this issue involves two key challenges. Firstly, how to inject the style representation without compromising the effectiveness of text representation in control. Secondly, how to obtain the accurate style representation from a single reference image. To tackle these challenges, we introduce StyleTokenizer, a zero-shot style control image generation method that aligns style representation with text representation using a style tokenizer. This alignment effectively minimizes the impact on the effectiveness of text prompts. Furthermore, we collect a well-labeled style dataset named Style30k to train a style feature extractor capable of accurately representing style while excluding other content information. Experimental results demonstrate that our method fully grasps the style characteristics of the reference image, generating appealing images that are consistent with both the target image style and text prompt. The code and dataset are available at https://github.com/alipay/style-tokenizer.
Abstract:Beyond the superiority of the text-to-image diffusion model in generating high-quality images, recent studies have attempted to uncover its potential for adapting the learned semantic knowledge to visual perception tasks. In this work, instead of translating a generative diffusion model into a visual perception model, we explore to retain the generative ability with the perceptive adaptation. To accomplish this, we present Zippo, a unified framework for zipping the color and transparency distributions into a single diffusion model by expanding the diffusion latent into a joint representation of RGB images and alpha mattes. By alternatively selecting one modality as the condition and then applying the diffusion process to the counterpart modality, Zippo is capable of generating RGB images from alpha mattes and predicting transparency from input images. In addition to single-modality prediction, we propose a modality-aware noise reassignment strategy to further empower Zippo with jointly generating RGB images and its corresponding alpha mattes under the text guidance. Our experiments showcase Zippo's ability of efficient text-conditioned transparent image generation and present plausible results of Matte-to-RGB and RGB-to-Matte translation.
Abstract:In person re-identification (re-ID) task, it is still challenging to learn discriminative representation by deep learning, due to limited data. Generally speaking, the model will get better performance when increasing the amount of data. The addition of similar classes strengthens the ability of the classifier to identify similar identities, thereby improving the discrimination of representation. In this paper, we propose a Diverse and Compact Transformer (DC-Former) that can achieve a similar effect by splitting embedding space into multiple diverse and compact subspaces. Compact embedding subspace helps model learn more robust and discriminative embedding to identify similar classes. And the fusion of these diverse embeddings containing more fine-grained information can further improve the effect of re-ID. Specifically, multiple class tokens are used in vision transformer to represent multiple embedding spaces. Then, a self-diverse constraint (SDC) is applied to these spaces to push them away from each other, which makes each embedding space diverse and compact. Further, a dynamic weight controller(DWC) is further designed for balancing the relative importance among them during training. The experimental results of our method are promising, which surpass previous state-of-the-art methods on several commonly used person re-ID benchmarks.
Abstract:Automatic snake species recognition is important because it has vast potential to help lower deaths and disabilities caused by snakebites. We introduce our solution in SnakeCLEF 2022 for fine-grained snake species recognition on a heavy long-tailed class distribution. First, a network architecture is designed to extract and fuse features from multiple modalities, i.e. photograph from visual modality and geographic locality information from language modality. Then, logit adjustment based methods are studied to relieve the impact caused by the severe class imbalance. Next, a combination of supervised and self-supervised learning method is proposed to make full use of the dataset, including both labeled training data and unlabeled testing data. Finally, post processing strategies, such as multi-scale and multi-crop test-time-augmentation, location filtering and model ensemble, are employed for better performance. With an ensemble of several different models, a private score 82.65%, ranking the 3rd, is achieved on the final leaderboard.
Abstract:Human-Object Interaction (HOI) detection is a fundamental task in high-level human-centric scene understanding. We propose PhraseHOI, containing a HOI branch and a novel phrase branch, to leverage language prior and improve relation expression. Specifically, the phrase branch is supervised by semantic embeddings, whose ground truths are automatically converted from the original HOI annotations without extra human efforts. Meanwhile, a novel label composition method is proposed to deal with the long-tailed problem in HOI, which composites novel phrase labels by semantic neighbors. Further, to optimize the phrase branch, a loss composed of a distilling loss and a balanced triplet loss is proposed. Extensive experiments are conducted to prove the effectiveness of the proposed PhraseHOI, which achieves significant improvement over the baseline and surpasses previous state-of-the-art methods on Full and NonRare on the challenging HICO-DET benchmark.
Abstract:Triplet loss is a widely adopted loss function in ReID task which pulls the hardest positive pairs close and pushes the hardest negative pairs far away. However, the selected samples are not the hardest globally, but the hardest only in a mini-batch, which will affect the performance. In this report, a hard batch mining method is proposed to mine the hardest samples globally to make triplet harder. More specifically, the most similar classes are selected into a same mini-batch so that the similar classes could be pushed further away. Besides, an adversarial scene removal module composed of a scene classifier and an adversarial loss is used to learn scene invariant feature representations. Experiments are conducted on dataset MSMT17 to prove the effectiveness, and our method surpasses all of the previous methods and sets state-of-the-art result.
Abstract:We propose HOI Transformer to tackle human object interaction (HOI) detection in an end-to-end manner. Current approaches either decouple HOI task into separated stages of object detection and interaction classification or introduce surrogate interaction problem. In contrast, our method, named HOI Transformer, streamlines the HOI pipeline by eliminating the need for many hand-designed components. HOI Transformer reasons about the relations of objects and humans from global image context and directly predicts HOI instances in parallel. A quintuple matching loss is introduced to force HOI predictions in a unified way. Our method is conceptually much simpler and demonstrates improved accuracy. Without bells and whistles, HOI Transformer achieves $26.61\% $ $ AP $ on HICO-DET and $52.9\%$ $AP_{role}$ on V-COCO, surpassing previous methods with the advantage of being much simpler. We hope our approach will serve as a simple and effective alternative for HOI tasks. Code is available at https://github.com/bbepoch/HoiTransformer .