Abstract:Advances in multimodal pre-training have propelled object-level foundation models, such as Grounding DINO and Florence-2, in tasks like visual grounding and object detection. However, interpreting these models\' decisions has grown increasingly challenging. Existing interpretable attribution methods for object-level task interpretation have notable limitations: (1) gradient-based methods lack precise localization due to visual-textual fusion in foundation models, and (2) perturbation-based methods produce noisy saliency maps, limiting fine-grained interpretability. To address these, we propose a Visual Precision Search method that generates accurate attribution maps with fewer regions. Our method bypasses internal model parameters to overcome attribution issues from multimodal fusion, dividing inputs into sparse sub-regions and using consistency and collaboration scores to accurately identify critical decision-making regions. We also conducted a theoretical analysis of the boundary guarantees and scope of applicability of our method. Experiments on RefCOCO, MS COCO, and LVIS show our approach enhances object-level task interpretability over SOTA for Grounding DINO and Florence-2 across various evaluation metrics, with faithfulness gains of 23.7\%, 31.6\%, and 20.1\% on MS COCO, LVIS, and RefCOCO for Grounding DINO, and 102.9\% and 66.9\% on MS COCO and RefCOCO for Florence-2. Additionally, our method can interpret failures in visual grounding and object detection tasks, surpassing existing methods across multiple evaluation metrics. The code will be released at \url{https://github.com/RuoyuChen10/VPS}.
Abstract:As LLMs rapidly advance, increasing concerns arise regarding risks about actual authorship of texts we see online and in real world. The task of distinguishing LLM-authored texts is complicated by the nuanced and overlapping behaviors of both machines and humans. In this paper, we challenge the current practice of considering LLM-generated text detection a binary classification task of differentiating human from AI. Instead, we introduce a novel ternary text classification scheme, adding an "undecided" category for texts that could be attributed to either source, and we show that this new category is crucial to understand how to make the detection result more explainable to lay users. This research shifts the paradigm from merely classifying to explaining machine-generated texts, emphasizing need for detectors to provide clear and understandable explanations to users. Our study involves creating four new datasets comprised of texts from various LLMs and human authors. Based on new datasets, we performed binary classification tests to ascertain the most effective SOTA detection methods and identified SOTA LLMs capable of producing harder-to-detect texts. We constructed a new dataset of texts generated by two top-performing LLMs and human authors, and asked three human annotators to produce ternary labels with explanation notes. This dataset was used to investigate how three top-performing SOTA detectors behave in new ternary classification context. Our results highlight why "undecided" category is much needed from the viewpoint of explainability. Additionally, we conducted an analysis of explainability of the three best-performing detectors and the explanation notes of the human annotators, revealing insights about the complexity of explainable detection of machine-generated texts. Finally, we propose guidelines for developing future detection systems with improved explanatory power.
Abstract:Recent advances in discriminative and generative pretraining have yielded geometry estimation models with strong generalization capabilities. While discriminative monocular geometry estimation methods rely on large-scale fine-tuning data to achieve zero-shot generalization, several generative-based paradigms show the potential of achieving impressive generalization performance on unseen scenes by leveraging pre-trained diffusion models and fine-tuning on even a small scale of synthetic training data. Frustratingly, these models are trained with different recipes on different datasets, making it hard to find out the critical factors that determine the evaluation performance. Besides, current geometry evaluation benchmarks have two main drawbacks that may prevent the development of the field, i.e., limited scene diversity and unfavorable label quality. To resolve the above issues, (1) we build fair and strong baselines in a unified codebase for evaluating and analyzing the geometry estimation models; (2) we evaluate monocular geometry estimators on more challenging benchmarks for geometry estimation task with diverse scenes and high-quality annotations. Our results reveal that pre-trained using large data, discriminative models such as DINOv2, can outperform generative counterparts with a small amount of high-quality synthetic data under the same training configuration, which suggests that fine-tuning data quality is a more important factor than the data scale and model architecture. Our observation also raises a question: if simply fine-tuning a general vision model such as DINOv2 using a small amount of synthetic depth data produces SOTA results, do we really need complex generative models for depth estimation? We believe this work can propel advancements in geometry estimation tasks as well as a wide range of downstream applications.
Abstract:Although most graph neural networks (GNNs) can operate on graphs of any size, their classification performance often declines on graphs larger than those encountered during training. Existing methods insufficiently address the removal of size information from graph representations, resulting in sub-optimal performance and reliance on backbone models. In response, we propose DISGEN, a novel and model-agnostic framework designed to disentangle size factors from graph representations. DISGEN employs size- and task-invariant augmentations and introduces a decoupling loss that minimizes shared information in hidden representations, with theoretical guarantees for its effectiveness. Our empirical results show that DISGEN outperforms the state-of-the-art models by up to 6% on real-world datasets, underscoring its effectiveness in enhancing the size generalizability of GNNs. Our codes are available at: https://github.com/GraphmindDartmouth/DISGEN.
Abstract:Mis- and disinformation online have become a major societal problem as major sources of online harms of different kinds. One common form of mis- and disinformation is out-of-context (OOC) information, where different pieces of information are falsely associated, e.g., a real image combined with a false textual caption or a misleading textual description. Although some past studies have attempted to defend against OOC mis- and disinformation through external evidence, they tend to disregard the role of different pieces of evidence with different stances. Motivated by the intuition that the stance of evidence represents a bias towards different detection results, we propose a stance extraction network (SEN) that can extract the stances of different pieces of multi-modal evidence in a unified framework. Moreover, we introduce a support-refutation score calculated based on the co-occurrence relations of named entities into the textual SEN. Extensive experiments on a public large-scale dataset demonstrated that our proposed method outperformed the state-of-the-art baselines, with the best model achieving a performance gain of 3.2% in accuracy.
Abstract:With the wide adoption of mobile devices and web applications, location-based social networks (LBSNs) offer large-scale individual-level location-related activities and experiences. Next point-of-interest (POI) recommendation is one of the most important tasks in LBSNs, aiming to make personalized recommendations of next suitable locations to users by discovering preferences from users' historical activities. Noticeably, LBSNs have offered unparalleled access to abundant heterogeneous relational information about users and POIs (including user-user social relations, such as families or colleagues; and user-POI visiting relations). Such relational information holds great potential to facilitate the next POI recommendation. However, most existing methods either focus on merely the user-POI visits, or handle different relations based on over-simplified assumptions while neglecting relational heterogeneities. To fill these critical voids, we propose a novel framework, MEMO, which effectively utilizes the heterogeneous relations with a multi-network representation learning module, and explicitly incorporates the inter-temporal user-POI mutual influence with the coupled recurrent neural networks. Extensive experiments on real-world LBSN data validate the superiority of our framework over the state-of-the-art next POI recommendation methods.
Abstract:Recapturing and rebroadcasting of images are common attack methods in insurance frauds and face identification spoofing, and an increasing number of detection techniques were introduced to handle this problem. However, most of them ignored the domain generalization scenario and scale variances, with an inferior performance on domain shift situations, and normally were exacerbated by intra-domain and inter-domain scale variances. In this paper, we propose a scale alignment domain generalization framework (SADG) to address these challenges. First, an adversarial domain discriminator is exploited to minimize the discrepancies of image representation distributions among different domains. Meanwhile, we exploit triplet loss as a local constraint to achieve a clearer decision boundary. Moreover, a scale alignment loss is introduced as a global relationship regularization to force the image representations of the same class across different scales to be undistinguishable. Experimental results on four databases and comparison with state-of-the-art approaches show that better performance can be achieved using our framework.
Abstract:To mitigate the spread of COVID-19 pandemic, decision-makers and public authorities have announced various non-pharmaceutical policies. Analyzing the causal impact of these policies in reducing the spread of COVID-19 is important for future policy-making. The main challenge here is the existence of unobserved confounders (e.g., vigilance of residents). Besides, as the confounders may be time-varying during COVID-19 (e.g., vigilance of residents changes in the course of the pandemic), it is even more difficult to capture them. In this paper, we study the problem of assessing the causal effects of different COVID-19 related policies on the outbreak dynamics in different counties at any given time period. To this end, we integrate data about different COVID-19 related policies (treatment) and outbreak dynamics (outcome) for different United States counties over time and analyze them with respect to variables that can infer the confounders, including the covariates of different counties, their relational information and historical information. Based on these data, we develop a neural network based causal effect estimation framework which leverages above information in observational data and learns the representations of time-varying (unobserved) confounders. In this way, it enables us to quantify the causal impact of policies at different granularities, ranging from a category of policies with a certain goal to a specific policy type in this category. Besides, experimental results also indicate the effectiveness of our proposed framework in capturing the confounders for quantifying the causal impact of different policies. More specifically, compared with several baseline methods, our framework captures the outbreak dynamics more accurately, and our assessment of policies is more consistent with existing epidemiological studies of COVID-19.
Abstract:Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision. In this study, we explore the possibility of employing fuzzy clustering in a deep neural network framework. Thus, we present a novel evolutionary unsupervised learning representation model with iterative optimization. It implements the deep adaptive fuzzy clustering (DAFC) strategy that learns a convolutional neural network classifier from given only unlabeled data samples. DAFC consists of a deep feature quality-verifying model and a fuzzy clustering model, where deep feature representation learning loss function and embedded fuzzy clustering with the weighted adaptive entropy is implemented. We joint fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments and jointly optimize for the deep representation learning and clustering. Also, the joint model evaluates current clustering performance by inspecting whether the re-sampled data from estimated bottleneck space have consistent clustering properties to progressively improve the deep clustering model. Comprehensive experiments on a variety of datasets show that the proposed method obtains a substantially better performance for both reconstruction and clustering quality when compared to the other state-of-the-art deep clustering methods, as demonstrated with the in-depth analysis in the extensive experiments.
Abstract:Scanned receipts OCR and key information extraction (SROIE) represent the processeses of recognizing text from scanned receipts and extracting key texts from them and save the extracted tests to structured documents. SROIE plays critical roles for many document analysis applications and holds great commercial potentials, but very little research works and advances have been published in this area. In recognition of the technical challenges, importance and huge commercial potentials of SROIE, we organized the ICDAR 2019 competition on SROIE. In this competition, we set up three tasks, namely, Scanned Receipt Text Localisation (Task 1), Scanned Receipt OCR (Task 2) and Key Information Extraction from Scanned Receipts (Task 3). A new dataset with 1000 whole scanned receipt images and annotations is created for the competition. In this report we will presents the motivation, competition datasets, task definition, evaluation protocol, submission statistics, performance of submitted methods and results analysis.