Abstract:Hallucinations in Large Language Models (LLMs) remain a major obstacle, particularly in high-stakes applications where factual accuracy is critical. While representation editing and reading methods have made strides in reducing hallucinations, their heavy reliance on specialised tools and training on in-domain samples, makes them difficult to scale and prone to overfitting. This limits their accuracy gains and generalizability to diverse datasets. This paper presents a lightweight method, Norm Voting (NoVo), which harnesses the untapped potential of attention head norms to dramatically enhance factual accuracy in zero-shot multiple-choice questions (MCQs). NoVo begins by automatically selecting truth-correlated head norms with an efficient, inference-only algorithm using only 30 random samples, allowing NoVo to effortlessly scale to diverse datasets. Afterwards, selected head norms are employed in a simple voting algorithm, which yields significant gains in prediction accuracy. On TruthfulQA MC1, NoVo surpasses the current state-of-the-art and all previous methods by an astounding margin -- at least 19 accuracy points. NoVo demonstrates exceptional generalization to 20 diverse datasets, with significant gains in over 90\% of them, far exceeding all current representation editing and reading methods. NoVo also reveals promising gains to finetuning strategies and building textual adversarial defence. NoVo's effectiveness with head norms opens new frontiers in LLM interpretability, robustness and reliability.
Abstract:Visual language pre-training (VLP) models have demonstrated significant success across various domains, yet they remain vulnerable to adversarial attacks. Addressing these adversarial vulnerabilities is crucial for enhancing security in multimodal learning. Traditionally, adversarial methods targeting VLP models involve simultaneously perturbing images and text. However, this approach faces notable challenges: first, adversarial perturbations often fail to translate effectively into real-world scenarios; second, direct modifications to the text are conspicuously visible. To overcome these limitations, we propose a novel strategy that exclusively employs image patches for attacks, thus preserving the integrity of the original text. Our method leverages prior knowledge from diffusion models to enhance the authenticity and naturalness of the perturbations. Moreover, to optimize patch placement and improve the efficacy of our attacks, we utilize the cross-attention mechanism, which encapsulates intermodal interactions by generating attention maps to guide strategic patch placements. Comprehensive experiments conducted in a white-box setting for image-to-text scenarios reveal that our proposed method significantly outperforms existing techniques, achieving a 100% attack success rate. Additionally, it demonstrates commendable performance in transfer tasks involving text-to-image configurations.
Abstract:Multimodal contrastive learning uses various data modalities to create high-quality features, but its reliance on extensive data sources on the Internet makes it vulnerable to backdoor attacks. These attacks insert malicious behaviors during training, which are activated by specific triggers during inference, posing significant security risks. Despite existing countermeasures through fine-tuning that reduce the malicious impacts of such attacks, these defenses frequently necessitate extensive training time and degrade clean accuracy. In this study, we propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning. This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities, known as Unlearn Backdoor Threats (UBT). We specifically use overfit training to improve backdoor shortcuts and accurately detect suspicious samples in the potential poisoning data set. Then, we select fewer unlearned samples from suspicious samples for rapid forgetting in order to eliminate the backdoor effect and thus improve backdoor defense efficiency. In the backdoor unlearning process, we present a novel token-based portion unlearning training regime. This technique focuses on the model's compromised elements, dissociating backdoor correlations while maintaining the model's overall integrity. Extensive experimental results show that our method effectively defends against various backdoor attack methods in the CLIP model. Compared to SoTA backdoor defense methods, UBT achieves the lowest attack success rate while maintaining a high clean accuracy of the model (attack success rate decreases by 19% compared to SOTA, while clean accuracy increases by 2.57%).
Abstract:Pre-trained large models for multimodal contrastive learning, such as CLIP, have been widely recognized in the industry as highly susceptible to data-poisoned backdoor attacks. This poses significant risks to downstream model training. In response to such potential threats, finetuning offers a simpler and more efficient defense choice compared to retraining large models with augmented data. In the supervised learning domain, fine-tuning defense strategies can achieve excellent defense performance. However, in the unsupervised and semi-supervised domain, we find that when CLIP faces some complex attack techniques, the existing fine-tuning defense strategy, CleanCLIP, has some limitations on defense performance. The synonym substitution of its text-augmentation is insufficient to enhance the text feature space. To compensate for this weakness, we improve it by proposing a fine-grained \textbf{T}ext \textbf{A}lignment \textbf{C}leaner (TA-Cleaner) to cut off feature connections of backdoor triggers. We randomly select a few samples for positive and negative subtext generation at each epoch of CleanCLIP, and align the subtexts to the images to strengthen the text self-supervision. We evaluate the effectiveness of our TA-Cleaner against six attack algorithms and conduct comprehensive zero-shot classification tests on ImageNet1K. Our experimental results demonstrate that TA-Cleaner achieves state-of-the-art defensiveness among finetuning-based defense techniques. Even when faced with the novel attack technique BadCLIP, our TA-Cleaner outperforms CleanCLIP by reducing the ASR of Top-1 and Top-10 by 52.02\% and 63.88\%, respectively.
Abstract:Object detection models, widely used in security-critical applications, are vulnerable to backdoor attacks that cause targeted misclassifications when triggered by specific patterns. Existing backdoor defense techniques, primarily designed for simpler models like image classifiers, often fail to effectively detect and remove backdoors in object detectors. We propose a backdoor defense framework tailored to object detection models, based on the observation that backdoor attacks cause significant inconsistencies between local modules' behaviors, such as the Region Proposal Network (RPN) and classification head. By quantifying and analyzing these inconsistencies, we develop an algorithm to detect backdoors. We find that the inconsistent module is usually the main source of backdoor behavior, leading to a removal method that localizes the affected module, resets its parameters, and fine-tunes the model on a small clean dataset. Extensive experiments with state-of-the-art two-stage object detectors show our method achieves a 90% improvement in backdoor removal rate over fine-tuning baselines, while limiting clean data accuracy loss to less than 4%. To the best of our knowledge, this work presents the first approach that addresses both the detection and removal of backdoors in two-stage object detection models, advancing the field of securing these complex systems against backdoor attacks.
Abstract:Multimodal contrastive pretraining, exemplified by models like CLIP, has been found to be vulnerable to backdoor attacks. While current backdoor defense methods primarily employ conventional data augmentation to create augmented samples aimed at feature alignment, these methods fail to capture the distinct features of backdoor samples, resulting in suboptimal defense performance. Observations reveal that adversarial examples and backdoor samples exhibit similarities in the feature space within the compromised models. Building on this insight, we propose Adversarial Backdoor Defense (ABD), a novel data augmentation strategy that aligns features with meticulously crafted adversarial examples. This approach effectively disrupts the backdoor association. Our experiments demonstrate that ABD provides robust defense against both traditional uni-modal and multimodal backdoor attacks targeting CLIP. Compared to the current state-of-the-art defense method, CleanCLIP, ABD reduces the attack success rate by 8.66% for BadNet, 10.52% for Blended, and 53.64% for BadCLIP, while maintaining a minimal average decrease of just 1.73% in clean accuracy.
Abstract:Recent advances in deep learning have markedly improved autonomous driving (AD) models, particularly end-to-end systems that integrate perception, prediction, and planning stages, achieving state-of-the-art performance. However, these models remain vulnerable to adversarial attacks, where human-imperceptible perturbations can disrupt decision-making processes. While adversarial training is an effective method for enhancing model robustness against such attacks, no prior studies have focused on its application to end-to-end AD models. In this paper, we take the first step in adversarial training for end-to-end AD models and present a novel Module-wise Adaptive Adversarial Training (MA2T). However, extending conventional adversarial training to this context is highly non-trivial, as different stages within the model have distinct objectives and are strongly interconnected. To address these challenges, MA2T first introduces Module-wise Noise Injection, which injects noise before the input of different modules, targeting training models with the guidance of overall objectives rather than each independent module loss. Additionally, we introduce Dynamic Weight Accumulation Adaptation, which incorporates accumulated weight changes to adaptively learn and adjust the loss weights of each module based on their contributions (accumulated reduction rates) for better balance and robust training. To demonstrate the efficacy of our defense, we conduct extensive experiments on the widely-used nuScenes dataset across several end-to-end AD models under both white-box and black-box attacks, where our method outperforms other baselines by large margins (+5-10%). Moreover, we validate the robustness of our defense through closed-loop evaluation in the CARLA simulation environment, showing improved resilience even against natural corruption.
Abstract:Large language models (LLMs) have transformed the development of embodied intelligence. By providing a few contextual demonstrations, developers can utilize the extensive internal knowledge of LLMs to effortlessly translate complex tasks described in abstract language into sequences of code snippets, which will serve as the execution logic for embodied agents. However, this paper uncovers a significant backdoor security threat within this process and introduces a novel method called \method{}. By poisoning just a few contextual demonstrations, attackers can covertly compromise the contextual environment of a black-box LLM, prompting it to generate programs with context-dependent defects. These programs appear logically sound but contain defects that can activate and induce unintended behaviors when the operational agent encounters specific triggers in its interactive environment. To compromise the LLM's contextual environment, we employ adversarial in-context generation to optimize poisoned demonstrations, where an LLM judge evaluates these poisoned prompts, reporting to an additional LLM that iteratively optimizes the demonstration in a two-player adversarial game using chain-of-thought reasoning. To enable context-dependent behaviors in downstream agents, we implement a dual-modality activation strategy that controls both the generation and execution of program defects through textual and visual triggers. We expand the scope of our attack by developing five program defect modes that compromise key aspects of confidentiality, integrity, and availability in embodied agents. To validate the effectiveness of our approach, we conducted extensive experiments across various tasks, including robot planning, robot manipulation, and compositional visual reasoning. Additionally, we demonstrate the potential impact of our approach by successfully attacking real-world autonomous driving systems.
Abstract:Large Vision-Language Models (LVLMs) have been widely adopted in various applications; however, they exhibit significant gender biases. Existing benchmarks primarily evaluate gender bias at the demographic group level, neglecting individual fairness, which emphasizes equal treatment of similar individuals. This research gap limits the detection of discriminatory behaviors, as individual fairness offers a more granular examination of biases that group fairness may overlook. For the first time, this paper introduces the GenderBias-\emph{VL} benchmark to evaluate occupation-related gender bias in LVLMs using counterfactual visual questions under individual fairness criteria. To construct this benchmark, we first utilize text-to-image diffusion models to generate occupation images and their gender counterfactuals. Subsequently, we generate corresponding textual occupation options by identifying stereotyped occupation pairs with high semantic similarity but opposite gender proportions in real-world statistics. This method enables the creation of large-scale visual question counterfactuals to expose biases in LVLMs, applicable in both multimodal and unimodal contexts through modifying gender attributes in specific modalities. Overall, our GenderBias-\emph{VL} benchmark comprises 34,581 visual question counterfactual pairs, covering 177 occupations. Using our benchmark, we extensively evaluate 15 commonly used open-source LVLMs (\eg, LLaVA) and state-of-the-art commercial APIs, including GPT-4o and Gemini-Pro. Our findings reveal widespread gender biases in existing LVLMs. Our benchmark offers: (1) a comprehensive dataset for occupation-related gender bias evaluation; (2) an up-to-date leaderboard on LVLM biases; and (3) a nuanced understanding of the biases presented by these models. \footnote{The dataset and code are available at the \href{https://genderbiasvl.github.io/}{website}.}
Abstract:Instruction tuning enhances large vision-language models (LVLMs) but raises security risks through potential backdoor attacks due to their openness. Previous backdoor studies focus on enclosed scenarios with consistent training and testing instructions, neglecting the practical domain gaps that could affect attack effectiveness. This paper empirically examines the generalizability of backdoor attacks during the instruction tuning of LVLMs for the first time, revealing certain limitations of most backdoor strategies in practical scenarios. We quantitatively evaluate the generalizability of six typical backdoor attacks on image caption benchmarks across multiple LVLMs, considering both visual and textual domain offsets. Our findings indicate that attack generalizability is positively correlated with the backdoor trigger's irrelevance to specific images/models and the preferential correlation of the trigger pattern. Additionally, we modify existing backdoor attacks based on the above key observations, demonstrating significant improvements in cross-domain scenario generalizability (+86% attack success rate). Notably, even without access to the instruction datasets, a multimodal instruction set can be successfully poisoned with a very low poisoning rate (0.2%), achieving an attack success rate of over 97%. This paper underscores that even simple traditional backdoor strategies pose a serious threat to LVLMs, necessitating more attention and in-depth research.