Abstract:Training large language models (LLMs) relies almost exclusively on dense adaptive optimizers with increasingly sophisticated preconditioners. We challenge this by showing that randomly masking parameter updates can be highly effective, with a masked variant of RMSProp consistently outperforming recent state-of-the-art optimizers. Our analysis reveals that the random masking induces a curvature-dependent geometric regularization that smooths the optimization trajectory. Motivated by this finding, we introduce Momentum-aligned gradient masking (Magma), which modulates the masked updates using momentum-gradient alignment. Extensive LLM pre-training experiments show that Magma is a simple drop-in replacement for adaptive optimizers with consistent gains and negligible computational overhead. Notably, for the 1B model size, Magma reduces perplexity by over 19\% and 9\% compared to Adam and Muon, respectively.
Abstract:Chain-of-Thought (CoT) has significantly enhanced the reasoning capabilities of Large Language Models (LLMs), especially when combined with reinforcement learning (RL) based post-training methods. While longer reasoning traces can improve answer quality and unlock abilities such as self-correction, they also incur high inference costs and often introduce redundant steps, known as overthinking. Recent research seeks to develop efficient reasoning strategies that balance reasoning length and accuracy, either through length-aware reward design or prompt-based calibration. However, these heuristic-based approaches may suffer from severe accuracy drop and be very sensitive to hyperparameters. To address these problems, we introduce CRT (Constraint-Rectified Training), a principled post-training framework based on reference-guarded constrained optimization, yielding a more stable and interpretable formulation for efficient reasoning. CRT alternates between minimizing reasoning length and rectifying accuracy only when performance falls below the reference, enabling stable and effective pruning of redundant reasoning. We further extend CRT with a two-stage training scheme that first discovers the shortest reliable reasoning patterns and then refines accuracy under a learnt length budget, preventing the re-emergence of verbose CoT. Our comprehensive evaluation shows that this framework consistently reduces token usage while maintaining answer quality at a robust and reliable level. Further analysis reveals that CRT improves reasoning efficiency not only by shortening responses but also by reducing internal language redundancy, leading to a new evaluation metric. Moreover, CRT-based training naturally yields a sequence of intermediate checkpoints that span a spectrum of explanation lengths while preserving correctness, enabling fine-grained control over reasoning verbosity without retraining.
Abstract:Scientific reasoning inherently demands integrating sophisticated toolkits to navigate domain-specific knowledge. Yet, current benchmarks largely overlook agents' ability to orchestrate tools for such rigorous workflows. To bridge this gap, we introduce SciAgentGym, a scalable interactive environment featuring 1,780 domain-specific tools across four natural science disciplines, supported by a robust execution infrastructure. Complementing this, we present SciAgentBench, a tiered evaluation suite designed to stress-test agentic capabilities from elementary actions to long-horizon workflows. Our evaluation identifies a critical bottleneck: state-of-the-art models struggle with complex scientific tool-use. Even for a leading model like GPT-5, success rates drop sharply from 60.6% to 30.9% as interaction horizons extend, primarily due to failures in multi-step workflow execution. To address this, we propose SciForge, a data synthesis method that models the tool action space as a dependency graph to generate logic-aware training trajectories. By fine-tuning on these trajectories, our SciAgent-8B outperforms the significantly larger Qwen3-VL-235B-Instruct while exhibiting positive cross-domain transfer of scientific tool-use capabilities. These results underscore the promising potential of next-generation autonomous scientific agents.
Abstract:Extracting signals through alpha factor mining is a fundamental challenge in quantitative finance. Existing automated methods primarily follow two paradigms: Decoupled Factor Generation, which treats factor discovery as isolated events, and Iterative Factor Evolution, which focuses on local parent-child refinements. However, both paradigms lack a global structural view, often treating factor pools as unstructured collections or fragmented chains, which leads to redundant search and limited diversity. To address these limitations, we introduce AlphaPROBE (Alpha Mining via Principled Retrieval and On-graph Biased Evolution), a framework that reframes alpha mining as the strategic navigation of a Directed Acyclic Graph (DAG). By modeling factors as nodes and evolutionary links as edges, AlphaPROBE treats the factor pool as a dynamic, interconnected ecosystem. The framework consists of two core components: a Bayesian Factor Retriever that identifies high-potential seeds by balancing exploitation and exploration through a posterior probability model, and a DAG-aware Factor Generator that leverages the full ancestral trace of factors to produce context-aware, nonredundant optimizations. Extensive experiments on three major Chinese stock market datasets against 8 competitive baselines demonstrate that AlphaPROBE significantly gains enhanced performance in predictive accuracy, return stability and training efficiency. Our results confirm that leveraging global evolutionary topology is essential for efficient and robust automated alpha discovery. We have open-sourced our implementation at https://github.com/gta0804/AlphaPROBE.
Abstract:LLMs have demonstrated significant potential in quantitative finance by processing vast unstructured data to emulate human-like analytical workflows. However, current LLM-based methods primarily follow either an Asset-Centric paradigm focused on individual stock prediction or a Market-Centric approach for portfolio allocation, often remaining agnostic to the underlying reasoning that drives market movements. In this paper, we propose a Logic-Oriented perspective, modeling the financial market as a dynamic, evolutionary ecosystem of competing investment narratives, termed Modes of Thought. To operationalize this view, we introduce MEME (Modeling the Evolutionary Modes of Financial Markets), designed to reconstruct market dynamics through the lens of evolving logics. MEME employs a multi-agent extraction module to transform noisy data into high-fidelity Investment Arguments and utilizes Gaussian Mixture Modeling to uncover latent consensus within a semantic space. To model semantic drift among different market conditions, we also implement a temporal evaluation and alignment mechanism to track the lifecycle and historical profitability of these modes. By prioritizing enduring market wisdom over transient anomalies, MEME ensures that portfolio construction is guided by robust reasoning. Extensive experiments on three heterogeneous Chinese stock pools from 2023 to 2025 demonstrate that MEME consistently outperforms seven SOTA baselines. Further ablation studies, sensitivity analysis, lifecycle case study and cost analysis validate MEME's capacity to identify and adapt to the evolving consensus of financial markets. Our implementation can be found at https://github.com/gta0804/MEME.
Abstract:Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
Abstract:Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
Abstract:Graph neural networks (GNNs) have been widely used in various graph machine learning scenarios. Existing literature primarily assumes well-annotated training graphs, while the reliability of labels is not guaranteed in real-world scenarios. Recently, efforts have been made to address the problem of graph learning with label noise. However, existing methods often (i) struggle to distinguish between reliable and unreliable nodes, and (ii) overlook the relational information embedded in the graph topology. To tackle this problem, this paper proposes a novel method, Dual-Standard Semantic Homogeneity with Dynamic Optimization (DREAM), for reliable, relation-informed optimization on graphs with label noise. Specifically, we design a relation-informed dynamic optimization framework that iteratively reevaluates the reliability of each labeled node in the graph during the optimization process according to the relation of the target node and other nodes. To measure this relation comprehensively, we propose a dual-standard selection strategy that selects a set of anchor nodes based on both node proximity and graph topology. Subsequently, we compute the semantic homogeneity between the target node and the anchor nodes, which serves as guidance for optimization. We also provide a rigorous theoretical analysis to justify the design of DREAM. Extensive experiments are performed on six graph datasets across various domains under three types of graph label noise against competing baselines, and the results demonstrate the effectiveness of the proposed DREAM.
Abstract:Graph Neural Networks (GNNs) have shown remarkable capabilities in learning from graph-structured data with various applications such as social analysis and bioinformatics. However, the presence of label noise in real scenarios poses a significant challenge in learning robust GNNs, and their effectiveness can be severely impacted when dealing with noisy labels on graphs, often stemming from annotation errors or inconsistencies. To address this, in this paper we propose a novel approach called ICGNN that harnesses the structure information of the graph to effectively alleviate the challenges posed by noisy labels. Specifically, we first design a novel noise indicator that measures the influence contradiction score (ICS) based on the graph diffusion matrix to quantify the credibility of nodes with clean labels, such that nodes with higher ICS values are more likely to be detected as having noisy labels. Then we leverage the Gaussian mixture model to precisely detect whether the label of a node is noisy or not. Additionally, we develop a soft strategy to combine the predictions from neighboring nodes on the graph to correct the detected noisy labels. At last, pseudo-labeling for abundant unlabeled nodes is incorporated to provide auxiliary supervision signals and guide the model optimization. Experiments on benchmark datasets show the superiority of our proposed approach.
Abstract:Erratum to the paper (Zhang et al., 2025): corrections to Table IV and the data in Page 3, Section A. In the post-pandemic era, a high proportion of civil aviation passengers wear masks during security checks, posing significant challenges to traditional face recognition models. The backbone network serves as the core component of face recognition models. In standard tests, r100 series models excelled (98%+ accuracy at 0.01% FAR in face comparison, high top1/top5 in search). r50 ranked second, r34_mask_v1 lagged. In masked tests, r100_mask_v2 led (90.07% accuracy), r50_mask_v3 performed best among r50 but trailed r100. Vit-Small/Tiny showed strong masked performance with gains in effectiveness. Through extensive comparative experiments, this paper conducts a comprehensive evaluation of several core backbone networks, aiming to reveal the impacts of different models on face recognition with and without masks, and provide specific deployment recommendations.