Abstract:The Space-Air-Ground Integrated Network (SAGIN) framework is a crucial foundation for future networks, where satellites and aerial nodes assist in computational task offloading. The low-altitude economy, leveraging the flexibility and multifunctionality of Unmanned Aerial Vehicles (UAVs) in SAGIN, holds significant potential for development in areas such as communication and sensing. However, effective coordination is needed to streamline information exchange and enable efficient system resource allocation. In this paper, we propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN. The CMADDPG algorithm leverages dynamic UAV clustering to partition UAVs into clusters, each managed by a Cluster Head (CH) UAV, facilitating a distributed-centralized control approach. Within each cluster, UAVs delegate offloading decisions to the CH UAV, reducing intra-cluster communication costs and decision conflicts, thereby enhancing task scheduling efficiency. Additionally, by employing a multi-agent reinforcement learning framework, the algorithm leverages the extensive coverage of satellites to achieve centralized training and distributed execution of multi-agent tasks, while maximizing overall system profit through optimized task offloading decision-making. Simulation results reveal that the CMADDPG algorithm effectively optimizes resource allocation, minimizes queue delays, maintains balanced load distribution, and surpasses existing methods by achieving at least a 25\% improvement in system profit, showcasing its robustness and adaptability across diverse scenarios.
Abstract:Jailbreak attacks circumvent LLMs' built-in safeguards by concealing harmful queries within jailbreak prompts. While existing defenses primarily focus on mitigating the effects of jailbreak prompts, they often prove inadequate as jailbreak prompts can take arbitrary, adaptive forms. This paper presents RobustKV, a novel defense that adopts a fundamentally different approach by selectively removing critical tokens of harmful queries from key-value (KV) caches. Intuitively, for a jailbreak prompt to be effective, its tokens must achieve sufficient `importance' (as measured by attention scores), which inevitably lowers the importance of tokens in the concealed harmful query. Thus, by strategically evicting the KVs of the lowest-ranked tokens, RobustKV diminishes the presence of the harmful query in the KV cache, thus preventing the LLM from generating malicious responses. Extensive evaluation using benchmark datasets and models demonstrates that RobustKV effectively counters state-of-the-art jailbreak attacks while maintaining the LLM's general performance on benign queries. Moreover, RobustKV creates an intriguing evasiveness dilemma for adversaries, forcing them to balance between evading RobustKV and bypassing the LLM's built-in safeguards. This trade-off contributes to RobustKV's robustness against adaptive attacks. (warning: this paper contains potentially harmful content generated by LLMs.)
Abstract:The Value Iteration Network (VIN) is an end-to-end differentiable architecture that performs value iteration on a latent MDP for planning in reinforcement learning (RL). However, VINs struggle to scale to long-term and large-scale planning tasks, such as navigating a $100\times 100$ maze -- a task which typically requires thousands of planning steps to solve. We observe that this deficiency is due to two issues: the representation capacity of the latent MDP and the planning module's depth. We address these by augmenting the latent MDP with a dynamic transition kernel, dramatically improving its representational capacity, and, to mitigate the vanishing gradient problem, introducing an "adaptive highway loss" that constructs skip connections to improve gradient flow. We evaluate our method on both 2D maze navigation environments and the ViZDoom 3D navigation benchmark. We find that our new method, named Dynamic Transition VIN (DT-VIN), easily scales to 5000 layers and casually solves challenging versions of the above tasks. Altogether, we believe that DT-VIN represents a concrete step forward in performing long-term large-scale planning in RL environments.
Abstract:Value iteration networks (VINs) enable end-to-end learning for planning tasks by employing a differentiable "planning module" that approximates the value iteration algorithm. However, long-term planning remains a challenge because training very deep VINs is difficult. To address this problem, we embed highway value iteration -- a recent algorithm designed to facilitate long-term credit assignment -- into the structure of VINs. This improvement augments the "planning module" of the VIN with three additional components: 1) an "aggregate gate," which constructs skip connections to improve information flow across many layers; 2) an "exploration module," crafted to increase the diversity of information and gradient flow in spatial dimensions; 3) a "filter gate" designed to ensure safe exploration. The resulting novel highway VIN can be trained effectively with hundreds of layers using standard backpropagation. In long-term planning tasks requiring hundreds of planning steps, deep highway VINs outperform both traditional VINs and several advanced, very deep NNs.
Abstract:Learning from multi-step off-policy data collected by a set of policies is a core problem of reinforcement learning (RL). Approaches based on importance sampling (IS) often suffer from large variances due to products of IS ratios. Typical IS-free methods, such as $n$-step Q-learning, look ahead for $n$ time steps along the trajectory of actions (where $n$ is called the lookahead depth) and utilize off-policy data directly without any additional adjustment. They work well for proper choices of $n$. We show, however, that such IS-free methods underestimate the optimal value function (VF), especially for large $n$, restricting their capacity to efficiently utilize information from distant future time steps. To overcome this problem, we introduce a novel, IS-free, multi-step off-policy method that avoids the underestimation issue and converges to the optimal VF. At its core lies a simple but non-trivial \emph{highway gate}, which controls the information flow from the distant future by comparing it to a threshold. The highway gate guarantees convergence to the optimal VF for arbitrary $n$ and arbitrary behavioral policies. It gives rise to a novel family of off-policy RL algorithms that safely learn even when $n$ is very large, facilitating rapid credit assignment from the far future to the past. On tasks with greatly delayed rewards, including video games where the reward is given only at the end of the game, our new methods outperform many existing multi-step off-policy algorithms.
Abstract:In environments with delayed observation, state augmentation by including actions within the delay window is adopted to retrieve Markovian property to enable reinforcement learning (RL). However, state-of-the-art (SOTA) RL techniques with Temporal-Difference (TD) learning frameworks often suffer from learning inefficiency, due to the significant expansion of the augmented state space with the delay. To improve learning efficiency without sacrificing performance, this work introduces a novel framework called Variational Delayed Policy Optimization (VDPO), which reformulates delayed RL as a variational inference problem. This problem is further modelled as a two-step iterative optimization problem, where the first step is TD learning in the delay-free environment with a small state space, and the second step is behaviour cloning which can be addressed much more efficiently than TD learning. We not only provide a theoretical analysis of VDPO in terms of sample complexity and performance, but also empirically demonstrate that VDPO can achieve consistent performance with SOTA methods, with a significant enhancement of sample efficiency (approximately 50\% less amount of samples) in the MuJoCo benchmark.
Abstract:The advent of fifth generation (5G) networks has opened new avenues for enhancing connectivity, particularly in challenging environments like remote areas or disaster-struck regions. Unmanned aerial vehicles (UAVs) have been identified as a versatile tool in this context, particularly for improving network performance through the Integrated access and backhaul (IAB) feature of 5G. However, existing approaches to UAV-assisted network enhancement face limitations in dynamically adapting to varying user locations and network demands. This paper introduces a novel approach leveraging deep reinforcement learning (DRL) to optimize UAV placement in real-time, dynamically adjusting to changing network conditions and user requirements. Our method focuses on the intricate balance between fronthaul and backhaul links, a critical aspect often overlooked in current solutions. The unique contribution of this work lies in its ability to autonomously position UAVs in a way that not only ensures robust connectivity to ground users but also maintains seamless integration with central network infrastructure. Through various simulated scenarios, we demonstrate how our approach effectively addresses these challenges, enhancing coverage and network performance in critical areas. This research fills a significant gap in UAV-assisted 5G networks, providing a scalable and adaptive solution for future mobile networks.
Abstract:Recent work on deep reinforcement learning (DRL) has pointed out that algorithmic information about good policies can be extracted from offline data which lack explicit information about executed actions. For example, videos of humans or robots may convey a lot of implicit information about rewarding action sequences, but a DRL machine that wants to profit from watching such videos must first learn by itself to identify and recognize relevant states/actions/rewards. Without relying on ground-truth annotations, our new method called Deep State Identifier learns to predict returns from episodes encoded as videos. Then it uses a kind of mask-based sensitivity analysis to extract/identify important critical states. Extensive experiments showcase our method's potential for understanding and improving agent behavior. The source code and the generated datasets are available at https://github.com/AI-Initiative-KAUST/VideoRLCS.
Abstract:Both Minsky's "society of mind" and Schmidhuber's "learning to think" inspire diverse societies of large multimodal neural networks (NNs) that solve problems by interviewing each other in a "mindstorm." Recent implementations of NN-based societies of minds consist of large language models (LLMs) and other NN-based experts communicating through a natural language interface. In doing so, they overcome the limitations of single LLMs, improving multimodal zero-shot reasoning. In these natural language-based societies of mind (NLSOMs), new agents -- all communicating through the same universal symbolic language -- are easily added in a modular fashion. To demonstrate the power of NLSOMs, we assemble and experiment with several of them (having up to 129 members), leveraging mindstorms in them to solve some practical AI tasks: visual question answering, image captioning, text-to-image synthesis, 3D generation, egocentric retrieval, embodied AI, and general language-based task solving. We view this as a starting point towards much larger NLSOMs with billions of agents-some of which may be humans. And with this emergence of great societies of heterogeneous minds, many new research questions have suddenly become paramount to the future of artificial intelligence. What should be the social structure of an NLSOM? What would be the (dis)advantages of having a monarchical rather than a democratic structure? How can principles of NN economies be used to maximize the total reward of a reinforcement learning NLSOM? In this work, we identify, discuss, and try to answer some of these questions.
Abstract:Offline RL methods have been shown to reduce the need for environment interaction by training agents using offline collected episodes. However, these methods typically require action information to be logged during data collection, which can be difficult or even impossible in some practical cases. In this paper, we investigate the potential of using action-free offline datasets to improve online reinforcement learning, name this problem Reinforcement Learning with Action-Free Offline Pretraining (AFP-RL). We introduce Action-Free Guide (AF-Guide), a method that guides online training by extracting knowledge from action-free offline datasets. AF-Guide consists of an Action-Free Decision Transformer (AFDT) implementing a variant of Upside-Down Reinforcement Learning. It learns to plan the next states from the offline dataset, and a Guided Soft Actor-Critic (Guided SAC) that learns online with guidance from AFDT. Experimental results show that AF-Guide can improve sample efficiency and performance in online training thanks to the knowledge from the action-free offline dataset.