Abstract:Music is essential in daily life, fulfilling emotional and entertainment needs, and connecting us personally, socially, and culturally. A better understanding of music can enhance our emotions, cognitive skills, and cultural connections. The rapid advancement of artificial intelligence (AI) has introduced new ways to analyze music, aiming to replicate human understanding of music and provide related services. While the traditional models focused on audio features and simple tasks, the recent development of large language models (LLMs) and foundation models (FMs), which excel in various fields by integrating semantic information and demonstrating strong reasoning abilities, could capture complex musical features and patterns, integrate music with language and incorporate rich musical, emotional and psychological knowledge. Therefore, they have the potential in handling complex music understanding tasks from a semantic perspective, producing outputs closer to human perception. This work, to our best knowledge, is one of the early reviews of the intersection of AI techniques and music understanding. We investigated, analyzed, and tested recent large-scale music foundation models in respect of their music comprehension abilities. We also discussed their limitations and proposed possible future directions, offering insights for researchers in this field.
Abstract:In an era defined by the explosive growth of data and rapid technological advancements, Multimodal Large Language Models (MLLMs) stand at the forefront of artificial intelligence (AI) systems. Designed to seamlessly integrate diverse data types-including text, images, videos, audio, and physiological sequences-MLLMs address the complexities of real-world applications far beyond the capabilities of single-modality systems. In this paper, we systematically sort out the applications of MLLM in multimodal tasks such as natural language, vision, and audio. We also provide a comparative analysis of the focus of different MLLMs in the tasks, and provide insights into the shortcomings of current MLLMs, and suggest potential directions for future research. Through these discussions, this paper hopes to provide valuable insights for the further development and application of MLLM.
Abstract:Large language models (LLMs) have demonstrated impressive task-solving capabilities, achieved through either prompting techniques or system designs. However, concerns have arisen regarding their proficiency in planning tasks, as they often struggle to generate valid plans. This paper investigates the impact of fine-tuning on LLMs' planning capabilities. Our findings indicate that LLMs can achieve good performance in planning through substantial (thousands of specific examples) fine-tuning. However, fine-tuning is associated with significant economic and computational costs. To address this challenge, we propose the Maximum Diversity Fine-Tuning (MDFT) strategy to improve the sample efficiency of fine-tuning in the planning domain. Specifically, our algorithm, referred to as MDFT-g, encodes the planning task instances with their graph representations and selects a subset of samples in the vector space that maximizes data diversity. We empirically demonstrate that MDFT-g consistently outperforms existing baselines at various scales across multiple benchmark domains.
Abstract:Audio-driven talking face generation has garnered significant interest within the domain of digital human research. Existing methods are encumbered by intricate model architectures that are intricately dependent on each other, complicating the process of re-editing image or video inputs. In this work, we present ControlTalk, a talking face generation method to control face expression deformation based on driven audio, which can construct the head pose and facial expression including lip motion for both single image or sequential video inputs in a unified manner. By utilizing a pre-trained video synthesis renderer and proposing the lightweight adaptation, ControlTalk achieves precise and naturalistic lip synchronization while enabling quantitative control over mouth opening shape. Our experiments show that our method is superior to state-of-the-art performance on widely used benchmarks, including HDTF and MEAD. The parameterized adaptation demonstrates remarkable generalization capabilities, effectively handling expression deformation across same-ID and cross-ID scenarios, and extending its utility to out-of-domain portraits, regardless of languages.
Abstract:Opioid related aberrant behaviors (ORAB) present novel risk factors for opioid overdose. Previously, ORAB have been mainly assessed by survey results and by monitoring drug administrations. Such methods however, cannot scale up and do not cover the entire spectrum of aberrant behaviors. On the other hand, ORAB are widely documented in electronic health record notes. This paper introduces a novel biomedical natural language processing benchmark dataset named ODD, for ORAB Detection Dataset. ODD is an expert-annotated dataset comprising of more than 750 publicly available EHR notes. ODD has been designed to identify ORAB from patients' EHR notes and classify them into nine categories; 1) Confirmed Aberrant Behavior, 2) Suggested Aberrant Behavior, 3) Opioids, 4) Indication, 5) Diagnosed opioid dependency, 6) Benzodiapines, 7) Medication Changes, 8) Central Nervous System-related, and 9) Social Determinants of Health. We explored two state-of-the-art natural language processing (NLP) models (finetuning pretrained language models and prompt-tuning approaches) to identify ORAB. Experimental results show that the prompt-tuning models outperformed the finetuning models in most cateogories and the gains were especially higher among uncommon categories (Suggested aberrant behavior, Diagnosed opioid dependency and Medication change). Although the best model achieved the highest 83.92% on area under precision recall curve, uncommon classes (Suggested Aberrant Behavior, Diagnosed Opioid Dependence, and Medication Change) still have a large room for performance improvement.
Abstract:Large language models (LLMs) such as ChatGPT have recently demonstrated significant potential in mathematical abilities, providing valuable reasoning paradigm consistent with human natural language. However, LLMs currently have difficulty in bridging perception, language understanding and reasoning capabilities due to incompatibility of the underlying information flow among them, making it challenging to accomplish tasks autonomously. On the other hand, abductive learning (ABL) frameworks for integrating the two abilities of perception and reasoning has seen significant success in inverse decipherment of incomplete facts, but it is limited by the lack of semantic understanding of logical reasoning rules and the dependence on complicated domain knowledge representation. This paper presents a novel method (ChatABL) for integrating LLMs into the ABL framework, aiming at unifying the three abilities in a more user-friendly and understandable manner. The proposed method uses the strengths of LLMs' understanding and logical reasoning to correct the incomplete logical facts for optimizing the performance of perceptual module, by summarizing and reorganizing reasoning rules represented in natural language format. Similarly, perceptual module provides necessary reasoning examples for LLMs in natural language format. The variable-length handwritten equation deciphering task, an abstract expression of the Mayan calendar decoding, is used as a testbed to demonstrate that ChatABL has reasoning ability beyond most existing state-of-the-art methods, which has been well supported by comparative studies. To our best knowledge, the proposed ChatABL is the first attempt to explore a new pattern for further approaching human-level cognitive ability via natural language interaction with ChatGPT.
Abstract:Recent work on designing an appropriate distribution of environments has shown promise for training effective generally capable agents. Its success is partly because of a form of adaptive curriculum learning that generates environment instances (or levels) at the frontier of the agent's capabilities. However, such an environment design framework often struggles to find effective levels in challenging design spaces and requires costly interactions with the environment. In this paper, we aim to introduce diversity in the Unsupervised Environment Design (UED) framework. Specifically, we propose a task-agnostic method to identify observed/hidden states that are representative of a given level. The outcome of this method is then utilized to characterize the diversity between two levels, which as we show can be crucial to effective performance. In addition, to improve sampling efficiency, we incorporate the self-play technique that allows the environment generator to automatically generate environments that are of great benefit to the training agent. Quantitatively, our approach, Diversity-induced Environment Design via Self-Play (DivSP), shows compelling performance over existing methods.
Abstract:Agent decision making using Reinforcement Learning (RL) heavily relies on either a model or simulator of the environment (e.g., moving in an 8x8 maze with three rooms, playing Chess on an 8x8 board). Due to this dependence, small changes in the environment (e.g. positions of obstacles in the maze, size of the board) can severely affect the effectiveness of the policy learnt by the agent. To that end, existing work has proposed training RL agents on an adaptive curriculum of environments (generated automatically) to improve performance on out-of-distribution (OOD) test scenarios. Specifically, existing research has employed the potential for the agent to learn in an environment (captured using Generalized Advantage Estimation, GAE) as the key factor to select the next environment(s) to train the agent. However, such a mechanism can select similar environments (with a high potential to learn) thereby making agent training redundant on all but one of those environments. To that end, we provide a principled approach to adaptively identify diverse environments based on a novel distance measure relevant to environment design. We empirically demonstrate the versatility and effectiveness of our method in comparison to multiple leading approaches for unsupervised environment design on three distinct benchmark problems used in literature.
Abstract:Many works have investigated the adversarial attacks or defenses under the settings where a bounded and imperceptible perturbation can be added to the input. However in the real-world, the attacker does not need to comply with this restriction. In fact, more threats to the deep model come from unrestricted adversarial examples, that is, the attacker makes large and visible modifications on the image, which causes the model classifying mistakenly, but does not affect the normal observation in human perspective. Unrestricted adversarial attack is a popular and practical direction but has not been studied thoroughly. We organize this competition with the purpose of exploring more effective unrestricted adversarial attack algorithm, so as to accelerate the academical research on the model robustness under stronger unbounded attacks. The competition is held on the TianChi platform (\url{https://tianchi.aliyun.com/competition/entrance/531853/introduction}) as one of the series of AI Security Challengers Program.
Abstract:With increasing world population and expanded use of forests as cohabited regions, interactions and conflicts with wildlife are increasing, leading to large-scale loss of lives (animal and human) and livelihoods (economic). While community knowledge is valuable, forest officials and conservation organisations can greatly benefit from predictive analysis of human-wildlife conflict, leading to targeted interventions that can potentially help save lives and livelihoods. However, the problem of prediction is a complex socio-technical problem in the context of limited data in low-resource regions. Identifying the "right" features to make accurate predictions of conflicts at the required spatial granularity using a sparse conflict training dataset} is the key challenge that we address in this paper. Specifically, we do an illustrative case study on human-wildlife conflicts in the Bramhapuri Forest Division in Chandrapur, Maharashtra, India. Most existing work has considered human-wildlife conflicts in protected areas and to the best of our knowledge, this is the first effort at prediction of human-wildlife conflicts in unprotected areas and using those predictions for deploying interventions on the ground.