Northwestern University
Abstract:Inverse Reinforcement Learning (IRL) has demonstrated effectiveness in a variety of imitation tasks. In this paper, we introduce an IRL framework designed to extract rewarding features from expert trajectories affected by delayed disturbances. Instead of relying on direct observations, our approach employs an efficient off-policy adversarial training framework to derive expert features and recover optimal policies from augmented delayed observations. Empirical evaluations in the MuJoCo environment under diverse delay settings validate the effectiveness of our method. Furthermore, we provide a theoretical analysis showing that recovering expert policies from augmented delayed observations outperforms using direct delayed observations.
Abstract:Research on autonomous driving in unstructured outdoor environments is less advanced than in structured urban settings due to challenges like environmental diversities and scene complexity. These environments-such as rural areas and rugged terrains-pose unique obstacles that are not common in structured urban areas. Despite these difficulties, autonomous driving in unstructured outdoor environments is crucial for applications in agriculture, mining, and military operations. Our survey reviews over 250 papers for autonomous driving in unstructured outdoor environments, covering offline mapping, pose estimation, environmental perception, path planning, end-to-end autonomous driving, datasets, and relevant challenges. We also discuss emerging trends and future research directions. This review aims to consolidate knowledge and encourage further research for autonomous driving in unstructured environments. To support ongoing work, we maintain an active repository with up-to-date literature and open-source projects at: https://github.com/chaytonmin/Survey-Autonomous-Driving-in-Unstructured-Environments.
Abstract:In this paper, we aim to tackle the limitation of the Adversarial Inverse Reinforcement Learning (AIRL) method in stochastic environments where theoretical results cannot hold and performance is degraded. To address this issue, we propose a novel method which infuses the dynamics information into the reward shaping with the theoretical guarantee for the induced optimal policy in the stochastic environments. Incorporating our novel model-enhanced rewards, we present a novel Model-Enhanced AIRL framework, which integrates transition model estimation directly into reward shaping. Furthermore, we provide a comprehensive theoretical analysis of the reward error bound and performance difference bound for our method. The experimental results in MuJoCo benchmarks show that our method can achieve superior performance in stochastic environments and competitive performance in deterministic environments, with significant improvement in sample efficiency, compared to existing baselines.
Abstract:Neural networks are increasingly used in safety-critical applications such as robotics and autonomous vehicles. However, the deployment of neural-network-controlled systems (NNCSs) raises significant safety concerns. Many recent advances overlook critical aspects of verifying control and ensuring safety in real-time scenarios. This paper presents a case study on using POLAR-Express, a state-of-the-art NNCS reachability analysis tool, for runtime safety verification in a Turtlebot navigation system using LiDAR. The Turtlebot, equipped with a neural network controller for steering, operates in a complex environment with obstacles. We developed a safe online controller switching strategy that switches between the original NNCS controller and an obstacle avoidance controller based on the verification results. Our experiments, conducted in a ROS2 Flatland simulation environment, explore the capabilities and limitations of using POLAR-Express for runtime verification and demonstrate the effectiveness of our switching strategy.
Abstract:While LLMs have demonstrated impressive performance across various domains and tasks, their security issues have become increasingly severe. Machine unlearning (MU) has emerged as a promising solution to address these issues by removing the influence of undesired data on the target model without compromising its utility in other aspects. MU typically assumes full access to the original training data to preserve utility, which is difficult to achieve in LLM unlearning. Existing LLM unlearning methods often assume access to data most affected by undesired data unlearning. However, this assumption underestimates the entanglement among various LLM capabilities and ignores data access limitations due to various issues. Moreover, these LLM unlearning methods do not sufficiently consider that unlearning requests in real-world scenarios are continuously emerging. To overcome these challenges and achieve practical LLM unlearning, we propose the O3 framework. The O3 framework includes an Out-Of-Distribution (OOD) detector to measure the similarity between input and unlearning data, and an Orthogonal low-rank adapter (LoRA) for continuously unlearning requested data. The OOD detector is trained with a novel contrastive entropy loss and utilizes a local-global layer-aggregated scoring mechanism. The orthogonal LoRA achieves parameter disentanglement among continual unlearning requests. During inference, our O3 framework can smartly decide whether and to what extent to load the unlearning LoRA based on the OOD detector's predictions. Notably, O3's effectiveness does not rely on any retained data. We conducted extensive experiments on O3 and state-of-the-art LLM unlearning methods across three tasks and seven datasets. The results indicate that O3 consistently achieves the best trade-off between unlearning effectiveness and utility preservation, especially when facing continuous unlearning requests.
Abstract:Diffusion models have made remarkable progress in solving various inverse problems, attributing to the generative modeling capability of the data manifold. Posterior sampling from the conditional score function enable the precious data consistency certified by the measurement-based likelihood term. However, most prevailing approaches confined to the deterministic deterioration process of the measurement model, regardless of capricious unpredictable disturbance in real-world sceneries. To address this obstacle, we show that the measurement-based likelihood can be renovated with restoration-based likelihood via the opposite probabilistic graphic direction, licencing the patronage of various off-the-shelf restoration models and extending the strictly deterministic deterioration process to adaptable clustered processes with the supposed prototype, in what we call restorer guidance. Particularly, assembled with versatile prototypes optionally, we can resolve inverse problems with bunch of choices for assorted sample quality and realize the proficient deterioration control with assured realistic. We show that our work can be formally analogous to the transition from classifier guidance to classifier-free guidance in the field of inverse problem solver. Experiments on multifarious inverse problems demonstrate the effectiveness of our method, including image dehazing, rain streak removal, and motion deblurring.
Abstract:Text-rich graphs, prevalent in data mining contexts like e-commerce and academic graphs, consist of nodes with textual features linked by various relations. Traditional graph machine learning models, such as Graph Neural Networks (GNNs), excel in encoding the graph structural information, but have limited capability in handling rich text on graph nodes. Large Language Models (LLMs), noted for their superior text understanding abilities, offer a solution for processing the text in graphs but face integration challenges due to their limitation for encoding graph structures and their computational complexities when dealing with extensive text in large neighborhoods of interconnected nodes. This paper introduces ``Hierarchical Compression'' (HiCom), a novel method to align the capabilities of LLMs with the structure of text-rich graphs. HiCom processes text in a node's neighborhood in a structured manner by organizing the extensive textual information into a more manageable hierarchy and compressing node text step by step. Therefore, HiCom not only preserves the contextual richness of the text but also addresses the computational challenges of LLMs, which presents an advancement in integrating the text processing power of LLMs with the structural complexities of text-rich graphs. Empirical results show that HiCom can outperform both GNNs and LLM backbones for node classification on e-commerce and citation graphs. HiCom is especially effective for nodes from a dense region in a graph, where it achieves a 3.48% average performance improvement on five datasets while being more efficient than LLM backbones.
Abstract:Most existing speech disfluency detection techniques only rely upon acoustic data. In this work, we present a practical multimodal disfluency detection approach that leverages available video data together with audio. We curate an audiovisual dataset and propose a novel fusion technique with unified weight-sharing modality-agnostic encoders to learn the temporal and semantic context. Our resilient design accommodates real-world scenarios where the video modality may sometimes be missing during inference. We also present alternative fusion strategies when both modalities are assured to be complete. In experiments across five disfluency-detection tasks, our unified multimodal approach significantly outperforms Audio-only unimodal methods, yielding an average absolute improvement of 10% (i.e., 10 percentage point increase) when both video and audio modalities are always available, and 7% even when video modality is missing in half of the samples.
Abstract:Graph machine learning (GML) is effective in many business applications. However, making GML easy to use and applicable to industry applications with massive datasets remain challenging. We developed GraphStorm, which provides an end-to-end solution for scalable graph construction, graph model training and inference. GraphStorm has the following desirable properties: (a) Easy to use: it can perform graph construction and model training and inference with just a single command; (b) Expert-friendly: GraphStorm contains many advanced GML modeling techniques to handle complex graph data and improve model performance; (c) Scalable: every component in GraphStorm can operate on graphs with billions of nodes and can scale model training and inference to different hardware without changing any code. GraphStorm has been used and deployed for over a dozen billion-scale industry applications after its release in May 2023. It is open-sourced in Github: https://github.com/awslabs/graphstorm.
Abstract:Large Language Models (LLMs) have shown significant promise in decision-making tasks when fine-tuned on specific applications, leveraging their inherent common sense and reasoning abilities learned from vast amounts of data. However, these systems are exposed to substantial safety and security risks during the fine-tuning phase. In this work, we propose the first comprehensive framework for Backdoor Attacks against LLM-enabled Decision-making systems (BALD), systematically exploring how such attacks can be introduced during the fine-tuning phase across various channels. Specifically, we propose three attack mechanisms and corresponding backdoor optimization methods to attack different components in the LLM-based decision-making pipeline: word injection, scenario manipulation, and knowledge injection. Word injection embeds trigger words directly into the query prompt. Scenario manipulation occurs in the physical environment, where a high-level backdoor semantic scenario triggers the attack. Knowledge injection conducts backdoor attacks on retrieval augmented generation (RAG)-based LLM systems, strategically injecting word triggers into poisoned knowledge while ensuring the information remains factually accurate for stealthiness. We conduct extensive experiments with three popular LLMs (GPT-3.5, LLaMA2, PaLM2), using two datasets (HighwayEnv, nuScenes), and demonstrate the effectiveness and stealthiness of our backdoor triggers and mechanisms. Finally, we critically assess the strengths and weaknesses of our proposed approaches, highlight the inherent vulnerabilities of LLMs in decision-making tasks, and evaluate potential defenses to safeguard LLM-based decision making systems.