Abstract:Images captured in hazy outdoor conditions often suffer from colour distortion, low contrast, and loss of detail, which impair high-level vision tasks. Single image dehazing is essential for applications such as autonomous driving and surveillance, with the aim of restoring image clarity. In this work, we propose WTCL-Dehaze an enhanced semi-supervised dehazing network that integrates Contrastive Loss and Discrete Wavelet Transform (DWT). We incorporate contrastive regularization to enhance feature representation by contrasting hazy and clear image pairs. Additionally, we utilize DWT for multi-scale feature extraction, effectively capturing high-frequency details and global structures. Our approach leverages both labelled and unlabelled data to mitigate the domain gap and improve generalization. The model is trained on a combination of synthetic and real-world datasets, ensuring robust performance across different scenarios. Extensive experiments demonstrate that our proposed algorithm achieves superior performance and improved robustness compared to state-of-the-art single image dehazing methods on both benchmark datasets and real-world images.
Abstract:This paper studies a practically meaningful ship detection problem from synthetic aperture radar (SAR) images by the neural network. We broadly extract different types of SAR image features and raise the intriguing question that whether these extracted features are beneficial to (1) suppress data variations (e.g., complex land-sea backgrounds, scattered noise) of real-world SAR images, and (2) enhance the features of ships that are small objects and have different aspect (length-width) ratios, therefore resulting in the improvement of ship detection. To answer this question, we propose a SAR-ship detection neural network (call SAR-ShipNet for short), by newly developing Bidirectional Coordinate Attention (BCA) and Multi-resolution Feature Fusion (MRF) based on CenterNet. Moreover, considering the varying length-width ratio of arbitrary ships, we adopt elliptical Gaussian probability distribution in CenterNet to improve the performance of base detector models. Experimental results on the public SAR-Ship dataset show that our SAR-ShipNet achieves competitive advantages in both speed and accuracy.