Abstract:In few-shot image classification tasks, methods based on pretrained vision-language models (such as CLIP) have achieved significant progress. Many existing approaches directly utilize visual or textual features as class prototypes, however, these features fail to adequately represent their respective classes. We identify that this limitation arises from the modality gap inherent in pretrained vision-language models, which weakens the connection between the visual and textual modalities. To eliminate this modality gap and enable textual features to fully represent class prototypes, we propose a simple and efficient Cross-Modal Mapping (CMM) method. This method employs a linear transformation to map image features into the textual feature space, ensuring that both modalities are comparable within the same feature space. Nevertheless, the modality gap diminishes the effectiveness of this mapping. To address this, we further introduce a triplet loss to optimize the spatial relationships between image features and class textual features, allowing class textual features to naturally serve as class prototypes for image features. Experimental results on 11 benchmark demonstrate an average improvement of approximately 3.5% compared to conventional methods and exhibit competitive performance on 4 distribution shift benchmarks.
Abstract:Real-world recommendation systems commonly offer diverse content scenarios for users to interact with. Considering the enormous number of users in industrial platforms, it is infeasible to utilize a single unified recommendation model to meet the requirements of all scenarios. Usually, separate recommendation pipelines are established for each distinct scenario. This practice leads to challenges in comprehensively grasping users' interests. Recent research endeavors have been made to tackle this problem by pre-training models to encapsulate the overall interests of users. Traditional pre-trained recommendation models mainly capture user interests by leveraging collaborative signals. Nevertheless, a prevalent drawback of these systems is their incapacity to handle long-tail items and cold-start scenarios. With the recent advent of large language models, there has been a significant increase in research efforts focused on exploiting LLMs to extract semantic information for users and items. However, text-based recommendations highly rely on elaborate feature engineering and frequently fail to capture collaborative similarities. To overcome these limitations, we propose a novel pre-training framework for sequential recommendation, termed PRECISE. This framework combines collaborative signals with semantic information. Moreover, PRECISE employs a learning framework that initially models users' comprehensive interests across all recommendation scenarios and subsequently concentrates on the specific interests of target-scene behaviors. We demonstrate that PRECISE precisely captures the entire range of user interests and effectively transfers them to the target interests. Empirical findings reveal that the PRECISE framework attains outstanding performance on both public and industrial datasets.
Abstract:In real-world scenarios, multi-view multi-label learning often encounters the challenge of incomplete training data due to limitations in data collection and unreliable annotation processes. The absence of multi-view features impairs the comprehensive understanding of samples, omitting crucial details essential for classification. To address this issue, we present a task-augmented cross-view imputation network (TACVI-Net) for the purpose of handling partial multi-view incomplete multi-label classification. Specifically, we employ a two-stage network to derive highly task-relevant features to recover the missing views. In the first stage, we leverage the information bottleneck theory to obtain a discriminative representation of each view by extracting task-relevant information through a view-specific encoder-classifier architecture. In the second stage, an autoencoder based multi-view reconstruction network is utilized to extract high-level semantic representation of the augmented features and recover the missing data, thereby aiding the final classification task. Extensive experiments on five datasets demonstrate that our TACVI-Net outperforms other state-of-the-art methods.
Abstract:Jailbreak vulnerabilities in Large Language Models (LLMs) refer to methods that extract malicious content from the model by carefully crafting prompts or suffixes, which has garnered significant attention from the research community. However, traditional attack methods, which primarily focus on the semantic level, are easily detected by the model. These methods overlook the difference in the model's alignment protection capabilities at different output stages. To address this issue, we propose an adaptive position pre-fill jailbreak attack approach for executing jailbreak attacks on LLMs. Our method leverages the model's instruction-following capabilities to first output pre-filled safe content, then exploits its narrative-shifting abilities to generate harmful content. Extensive black-box experiments demonstrate our method can improve the attack success rate by 47% on the widely recognized secure model (Llama2) compared to existing approaches. Our code can be found at: https://github.com/Yummy416/AdaPPA.
Abstract:Multimodal fusion focuses on integrating information from multiple modalities with the goal of more accurate prediction, which has achieved remarkable progress in a wide range of scenarios, including autonomous driving and medical diagnosis. However, the reliability of multimodal fusion remains largely unexplored especially under low-quality data settings. This paper surveys the common challenges and recent advances of multimodal fusion in the wild and presents them in a comprehensive taxonomy. From a data-centric view, we identify four main challenges that are faced by multimodal fusion on low-quality data, namely (1) noisy multimodal data that are contaminated with heterogeneous noises, (2) incomplete multimodal data that some modalities are missing, (3) imbalanced multimodal data that the qualities or properties of different modalities are significantly different and (4) quality-varying multimodal data that the quality of each modality dynamically changes with respect to different samples. This new taxonomy will enable researchers to understand the state of the field and identify several potential directions. We also provide discussion for the open problems in this field together with interesting future research directions.
Abstract:Multi-view learning has become a popular research topic in recent years, but research on the cross-application of classic multi-label classification and multi-view learning is still in its early stages. In this paper, we focus on the complex yet highly realistic task of incomplete multi-view weak multi-label learning and propose a masked two-channel decoupling framework based on deep neural networks to solve this problem. The core innovation of our method lies in decoupling the single-channel view-level representation, which is common in deep multi-view learning methods, into a shared representation and a view-proprietary representation. We also design a cross-channel contrastive loss to enhance the semantic property of the two channels. Additionally, we exploit supervised information to design a label-guided graph regularization loss, helping the extracted embedding features preserve the geometric structure among samples. Inspired by the success of masking mechanisms in image and text analysis, we develop a random fragment masking strategy for vector features to improve the learning ability of encoders. Finally, it is important to emphasize that our model is fully adaptable to arbitrary view and label absences while also performing well on the ideal full data. We have conducted sufficient and convincing experiments to confirm the effectiveness and advancement of our model.
Abstract:In recent years, incomplete multi-view clustering, which studies the challenging multi-view clustering problem on missing views, has received growing research interests. Although a series of methods have been proposed to address this issue, the following problems still exist: 1) Almost all of the existing methods are based on shallow models, which is difficult to obtain discriminative common representations. 2) These methods are generally sensitive to noise or outliers since the negative samples are treated equally as the important samples. In this paper, we propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net), to address these issues. Specifically, it captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework. Moreover, based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training, which can reduce the negative influence of outliers. Experimental results on several incomplete datasets show that CDIMC-net outperforms the state-of-the-art incomplete multi-view clustering methods.
Abstract:Incomplete multi-view clustering is a hot and emerging topic. It is well known that unavoidable data incompleteness greatly weakens the effective information of multi-view data. To date, existing incomplete multi-view clustering methods usually bypass unavailable views according to prior missing information, which is considered as a second-best scheme based on evasion. Other methods that attempt to recover missing information are mostly applicable to specific two-view datasets. To handle these problems, in this paper, we propose an information recovery-driven deep incomplete multi-view clustering network, termed as RecFormer. Concretely, a two-stage autoencoder network with the self-attention structure is built to synchronously extract high-level semantic representations of multiple views and recover the missing data. Besides, we develop a recurrent graph reconstruction mechanism that cleverly leverages the restored views to promote the representation learning and the further data reconstruction. Visualization of recovery results are given and sufficient experimental results confirm that our RecFormer has obvious advantages over other top methods.
Abstract:As a cross-topic of multi-view learning and multi-label classification, multi-view multi-label classification has gradually gained traction in recent years. The application of multi-view contrastive learning has further facilitated this process, however, the existing multi-view contrastive learning methods crudely separate the so-called negative pair, which largely results in the separation of samples belonging to the same category or similar ones. Besides, plenty of multi-view multi-label learning methods ignore the possible absence of views and labels. To address these issues, in this paper, we propose an incomplete multi-view partial multi-label classification network named RANK. In this network, a label-driven multi-view contrastive learning strategy is proposed to leverage supervised information to preserve the structure within view and perform consistent alignment across views. Furthermore, we break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample. The label correlation information is fully utilized in the final multi-label cross-entropy classification loss, effectively improving the discriminative power. Last but not least, our model is not only able to handle complete multi-view multi-label datasets, but also works on datasets with missing instances and labels. Extensive experiments confirm that our RANK outperforms existing state-of-the-art methods.
Abstract:In recent years, multi-view multi-label learning has aroused extensive research enthusiasm. However, multi-view multi-label data in the real world is commonly incomplete due to the uncertain factors of data collection and manual annotation, which means that not only multi-view features are often missing, and label completeness is also difficult to be satisfied. To deal with the double incomplete multi-view multi-label classification problem, we propose a deep instance-level contrastive network, namely DICNet. Different from conventional methods, our DICNet focuses on leveraging deep neural network to exploit the high-level semantic representations of samples rather than shallow-level features. First, we utilize the stacked autoencoders to build an end-to-end multi-view feature extraction framework to learn the view-specific representations of samples. Furthermore, in order to improve the consensus representation ability, we introduce an incomplete instance-level contrastive learning scheme to guide the encoders to better extract the consensus information of multiple views and use a multi-view weighted fusion module to enhance the discrimination of semantic features. Overall, our DICNet is adept in capturing consistent discriminative representations of multi-view multi-label data and avoiding the negative effects of missing views and missing labels. Extensive experiments performed on five datasets validate that our method outperforms other state-of-the-art methods.