Abstract:Gradient Inversion Attacks invert the transmitted gradients in Federated Learning (FL) systems to reconstruct the sensitive data of local clients and have raised considerable privacy concerns. A majority of gradient inversion methods rely heavily on explicit prior knowledge (e.g., a well pre-trained generative model), which is often unavailable in realistic scenarios. To alleviate this issue, researchers have proposed to leverage the implicit prior knowledge of an over-parameterized network. However, they only utilize a fixed neural architecture for all the attack settings. This would hinder the adaptive use of implicit architectural priors and consequently limit the generalizability. In this paper, we further exploit such implicit prior knowledge by proposing Gradient Inversion via Neural Architecture Search (GI-NAS), which adaptively searches the network and captures the implicit priors behind neural architectures. Extensive experiments verify that our proposed GI-NAS can achieve superior attack performance compared to state-of-the-art gradient inversion methods, even under more practical settings with high-resolution images, large-sized batches, and advanced defense strategies.
Abstract:In the field of heterogeneous federated learning (FL), the key challenge is to efficiently and collaboratively train models across multiple clients with different data distributions, model structures, task objectives, computational capabilities, and communication resources. This diversity leads to significant heterogeneity, which increases the complexity of model training. In this paper, we first outline the basic concepts of heterogeneous federated learning and summarize the research challenges in federated learning in terms of five aspects: data, model, task, device, and communication. In addition, we explore how existing state-of-the-art approaches cope with the heterogeneity of federated learning, and categorize and review these approaches at three different levels: data-level, model-level, and architecture-level. Subsequently, the paper extensively discusses privacy-preserving strategies in heterogeneous federated learning environments. Finally, the paper discusses current open issues and directions for future research, aiming to promote the further development of heterogeneous federated learning.
Abstract:Recently, the success of large models has demonstrated the importance of scaling up model size. This has spurred interest in exploring collaborative training of large-scale models from federated learning perspective. Due to computational constraints, many institutions struggle to train a large-scale model locally. Thus, training a larger global model using only smaller local models has become an important scenario (i.e., the \textbf{small-to-large scenario}). Although recent device-heterogeneity federated learning approaches have started to explore this area, they face limitations in fully covering the parameter space of the global model. In this paper, we propose a method called \textbf{FedBRB} (\underline{B}lock-wise \underline{R}olling and weighted \underline{B}roadcast) based on the block concept. FedBRB can uses small local models to train all blocks of the large global model, and broadcasts the trained parameters to the entire space for faster information interaction. Experiments demonstrate FedBRB yields substantial performance gains, achieving state-of-the-art results in this scenario. Moreover, FedBRB using only minimal local models can even surpass baselines using larger local models.
Abstract:To defend against privacy leakage of user data, differential privacy is widely used in federated learning, but it is not free. The addition of noise randomly disrupts the semantic integrity of the model and this disturbance accumulates with increased communication rounds. In this paper, we introduce a novel federated learning framework with rigorous privacy guarantees, named FedCEO, designed to strike a trade-off between model utility and user privacy by letting clients ''Collaborate with Each Other''. Specifically, we perform efficient tensor low-rank proximal optimization on stacked local model parameters at the server, demonstrating its capability to flexibly truncate high-frequency components in spectral space. This implies that our FedCEO can effectively recover the disrupted semantic information by smoothing the global semantic space for different privacy settings and continuous training processes. Moreover, we improve the SOTA utility-privacy trade-off bound by an order of $\sqrt{d}$, where $d$ is the input dimension. We illustrate our theoretical results with experiments on representative image datasets. It observes significant performance improvements and strict privacy guarantees under different privacy settings.
Abstract:With the development of practical deep learning models like generative AI, their excellent performance has brought huge economic value. For instance, ChatGPT has attracted more than 100 million users in three months. Since the model training requires a lot of data and computing power, a well-performing deep learning model is behind a huge effort and cost. Facing various model attacks, unauthorized use and abuse from the network that threaten the interests of model owners, in addition to considering legal and other administrative measures, it is equally important to protect the model's copyright from the technical means. By using the model watermarking technology, we point out the possibility of building a unified platform for model ownership verification. Given the application history of blockchain in copyright verification and the drawbacks of a centralized third-party, this paper considers combining model watermarking technology and blockchain to build a unified model copyright protection platform. By a new solution we called Tokenized Model, it protects the model's copyright by reliable ownership record and verification mechanism. It also promotes the financial value of model by constructing the model's transaction process and contribution shares of a model. In the typical case study, we also study the various performance under usual scenario to verify the effectiveness of this platform.
Abstract:Blockchain-empowered federated learning (FL) has provoked extensive research recently. Various blockchain-based federated learning algorithm, architecture and mechanism have been designed to solve issues like single point failure and data falsification brought by centralized FL paradigm. Moreover, it is easier to allocate incentives to nodes with the help of the blockchain. Various centralized federated learning frameworks like FedML, have emerged in the community to help boost the research on FL. However, decentralized blockchain-based federated learning framework is still missing, which cause inconvenience for researcher to reproduce or verify the algorithm performance based on blockchain. Inspired by the above issues, we have designed and developed a blockchain-based federated learning framework by embedding Ethereum network. This report will present the overall structure of this framework, which proposes a code practice paradigm for the combination of FL with blockchain and, at the same time, compatible with normal FL training task. In addition to implement some blockchain federated learning algorithms on smart contract to help execute a FL training, we also propose a model ownership authentication architecture based on blockchain and model watermarking to protect the intellectual property rights of models. These mechanism on blockchain shows an underlying support of blockchain for federated learning to provide a verifiable training, aggregation and incentive distribution procedure and thus we named this framework VeryFL (A Verify Federated Learninig Framework Embedded with Blockchain). The source code is avaliable on https://github.com/GTMLLab/VeryFL.
Abstract:In recent years, graph contrastive learning (GCL) has emerged as one of the optimal solutions for various supervised tasks at the node level. However, for unsupervised and structure-related tasks such as community detection, current GCL algorithms face difficulties in acquiring the necessary community-level information, resulting in poor performance. In addition, general contrastive learning algorithms improve the performance of downstream tasks by increasing the number of negative samples, which leads to severe class collision and unfairness of community detection. To address above issues, we propose a novel Community-aware Efficient Graph Contrastive Learning Framework (CEGCL) to jointly learn community partition and node representations in an end-to-end manner. Specifically, we first design a personalized self-training (PeST) strategy for unsupervised scenarios, which enables our model to capture precise community-level personalized information in a graph. With the benefit of the PeST, we alleviate class collision and unfairness without sacrificing the overall model performance. Furthermore, the aligned graph clustering (AlGC) is employed to obtain the community partition. In this module, we align the clustering space of our downstream task with that in PeST to achieve more consistent node embeddings. Finally, we demonstrate the effectiveness of our model for community detection both theoretically and experimentally. Extensive experimental results also show that our CEGCL exhibits state-of-the-art performance on three benchmark datasets with different scales.
Abstract:Recently, nonnegative matrix factorization (NMF) has been widely adopted for community detection, because of its better interpretability. However, the existing NMF-based methods have the following three problems: 1) they directly transform the original network into community membership space, so it is difficult for them to capture the hierarchical information; 2) they often only pay attention to the topology of the network and ignore its node attributes; 3) it is hard for them to learn the global structure information necessary for community detection. Therefore, we propose a new community detection algorithm, named Contrastive Deep Nonnegative Matrix Factorization (CDNMF). Firstly, we deepen NMF to strengthen its capacity for information extraction. Subsequently, inspired by contrastive learning, our algorithm creatively constructs network topology and node attributes as two contrasting views. Furthermore, we utilize a debiased negative sampling layer and learn node similarity at the community level, thereby enhancing the suitability of our model for community detection. We conduct experiments on three public real graph datasets and the proposed model has achieved better results than state-of-the-art methods. Code available at https://github.com/6lyc/CDNMF.git.
Abstract:Avatars, as promising digital assistants in Vehicular Metaverses, can enable drivers and passengers to immerse in 3D virtual spaces, serving as a practical emerging example of Artificial Intelligence of Things (AIoT) in intelligent vehicular environments. The immersive experience is achieved through seamless human-avatar interaction, e.g., augmented reality navigation, which requires intensive resources that are inefficient and impractical to process on intelligent vehicles locally. Fortunately, offloading avatar tasks to RoadSide Units (RSUs) or cloud servers for remote execution can effectively reduce resource consumption. However, the high mobility of vehicles, the dynamic workload of RSUs, and the heterogeneity of RSUs pose novel challenges to making avatar migration decisions. To address these challenges, in this paper, we propose a dynamic migration framework for avatar tasks based on real-time trajectory prediction and Multi-Agent Deep Reinforcement Learning (MADRL). Specifically, we propose a model to predict the future trajectories of intelligent vehicles based on their historical data, indicating the future workloads of RSUs.Based on the expected workloads of RSUs, we formulate the avatar task migration problem as a long-term mixed integer programming problem. To tackle this problem efficiently, the problem is transformed into a Partially Observable Markov Decision Process (POMDP) and solved by multiple DRL agents with hybrid continuous and discrete actions in decentralized. Numerical results demonstrate that our proposed algorithm can effectively reduce the latency of executing avatar tasks by around 25% without prediction and 30% with prediction and enhance user immersive experiences in the AIoT-enabled Vehicular Metaverse (AeVeM).
Abstract:To solve the inherent incompleteness of knowledge graphs (KGs), numbers of knowledge graph completion (KGC) models have been proposed to predict missing links from known triples. Among those, several works have achieved more advanced results via exploiting the structure information on KGs with Graph Convolutional Networks (GCN). However, we observe that entity embeddings aggregated from neighbors in different directions are just simply averaged to complete single-tasks by existing GCN based models, ignoring the specific requirements of forward and backward sub-tasks. In this paper, we propose a Direction-sensitive Multi-task GCN (DsMtGCN) to make full use of the direction information, the multi-head self-attention is applied to specifically combine embeddings in different directions based on various entities and sub-tasks, the geometric constraints are imposed to adjust the distribution of embeddings, and the traditional binary cross-entropy loss is modified to reflect the triple uncertainty. Moreover, the competitive experiments results on several benchmark datasets verify the effectiveness of our model.