Abstract:Blockchain-empowered federated learning (FL) has provoked extensive research recently. Various blockchain-based federated learning algorithm, architecture and mechanism have been designed to solve issues like single point failure and data falsification brought by centralized FL paradigm. Moreover, it is easier to allocate incentives to nodes with the help of the blockchain. Various centralized federated learning frameworks like FedML, have emerged in the community to help boost the research on FL. However, decentralized blockchain-based federated learning framework is still missing, which cause inconvenience for researcher to reproduce or verify the algorithm performance based on blockchain. Inspired by the above issues, we have designed and developed a blockchain-based federated learning framework by embedding Ethereum network. This report will present the overall structure of this framework, which proposes a code practice paradigm for the combination of FL with blockchain and, at the same time, compatible with normal FL training task. In addition to implement some blockchain federated learning algorithms on smart contract to help execute a FL training, we also propose a model ownership authentication architecture based on blockchain and model watermarking to protect the intellectual property rights of models. These mechanism on blockchain shows an underlying support of blockchain for federated learning to provide a verifiable training, aggregation and incentive distribution procedure and thus we named this framework VeryFL (A Verify Federated Learninig Framework Embedded with Blockchain). The source code is avaliable on https://github.com/GTMLLab/VeryFL.
Abstract:With the development of practical deep learning models like generative AI, their excellent performance has brought huge economic value. For instance, ChatGPT has attracted more than 100 million users in three months. Since the model training requires a lot of data and computing power, a well-performing deep learning model is behind a huge effort and cost. Facing various model attacks, unauthorized use and abuse from the network that threaten the interests of model owners, in addition to considering legal and other administrative measures, it is equally important to protect the model's copyright from the technical means. By using the model watermarking technology, we point out the possibility of building a unified platform for model ownership verification. Given the application history of blockchain in copyright verification and the drawbacks of a centralized third-party, this paper considers combining model watermarking technology and blockchain to build a unified model copyright protection platform. By a new solution we called Tokenized Model, it protects the model's copyright by reliable ownership record and verification mechanism. It also promotes the financial value of model by constructing the model's transaction process and contribution shares of a model. In the typical case study, we also study the various performance under usual scenario to verify the effectiveness of this platform.
Abstract:Artificial Intelligence Generated Content (AIGC) is one of the latest achievements in AI development. The content generated by related applications, such as text, images and audio, has sparked a heated discussion. Various derived AIGC applications are also gradually entering all walks of life, bringing unimaginable impact to people's daily lives. However, the rapid development of such generative tools has also raised concerns about privacy and security issues, and even copyright issues in AIGC. We note that advanced technologies such as blockchain and privacy computing can be combined with AIGC tools, but no work has yet been done to investigate their relevance and prospect in a systematic and detailed way. Therefore it is necessary to investigate how they can be used to protect the privacy and security of data in AIGC by fully exploring the aforementioned technologies. In this paper, we first systematically review the concept, classification and underlying technologies of AIGC. Then, we discuss the privacy and security challenges faced by AIGC from multiple perspectives and purposefully list the countermeasures that currently exist. We hope our survey will help researchers and industry to build a more secure and robust AIGC system.