In few-shot image classification tasks, methods based on pretrained vision-language models (such as CLIP) have achieved significant progress. Many existing approaches directly utilize visual or textual features as class prototypes, however, these features fail to adequately represent their respective classes. We identify that this limitation arises from the modality gap inherent in pretrained vision-language models, which weakens the connection between the visual and textual modalities. To eliminate this modality gap and enable textual features to fully represent class prototypes, we propose a simple and efficient Cross-Modal Mapping (CMM) method. This method employs a linear transformation to map image features into the textual feature space, ensuring that both modalities are comparable within the same feature space. Nevertheless, the modality gap diminishes the effectiveness of this mapping. To address this, we further introduce a triplet loss to optimize the spatial relationships between image features and class textual features, allowing class textual features to naturally serve as class prototypes for image features. Experimental results on 11 benchmark demonstrate an average improvement of approximately 3.5% compared to conventional methods and exhibit competitive performance on 4 distribution shift benchmarks.