School of Mathematics and Computer Science, Jianghan University
Abstract:Autonomous driving is a challenging task that requires perceiving and understanding the surrounding environment for safe trajectory planning. While existing vision-based end-to-end models have achieved promising results, these methods are still facing the challenges of vision understanding, decision reasoning and scene generalization. To solve these issues, a generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving. The proposed paradigm has two significant aspects. On one hand, a 3D-vision language pre-training module is designed to bridge the gap between visual perception and linguistic understanding in the bird's eye view. On the other hand, a cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories with perception and navigation information in an auto-regressive manner. Experiments on the challenging nuScenes dataset demonstrate that the proposed scheme achieves excellent performances compared with state-of-the-art methods. Besides, the proposed GPVL presents strong generalization ability and real-time potential when handling high-level commands in various scenarios. It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems. Code is available at https://github.com/ltp1995/GPVL
Abstract:In few-shot image classification tasks, methods based on pretrained vision-language models (such as CLIP) have achieved significant progress. Many existing approaches directly utilize visual or textual features as class prototypes, however, these features fail to adequately represent their respective classes. We identify that this limitation arises from the modality gap inherent in pretrained vision-language models, which weakens the connection between the visual and textual modalities. To eliminate this modality gap and enable textual features to fully represent class prototypes, we propose a simple and efficient Cross-Modal Mapping (CMM) method. This method employs a linear transformation to map image features into the textual feature space, ensuring that both modalities are comparable within the same feature space. Nevertheless, the modality gap diminishes the effectiveness of this mapping. To address this, we further introduce a triplet loss to optimize the spatial relationships between image features and class textual features, allowing class textual features to naturally serve as class prototypes for image features. Experimental results on 11 benchmark demonstrate an average improvement of approximately 3.5% compared to conventional methods and exhibit competitive performance on 4 distribution shift benchmarks.
Abstract:Click-through-rate (CTR) prediction has an essential impact on improving user experience and revenue in e-commerce search. With the development of deep learning, graph-based methods are well exploited to utilize graph structure extracted from user behaviors and other information to help embedding learning. However, most of the previous graph-based methods mainly focus on recommendation scenarios, and therefore their graph structures highly depend on item's sequential information from user behaviors, ignoring query's sequential signal and query-item correlation. In this paper, we propose a new approach named Light-weight End-to-End Graph Interest Network (EGIN) to effectively mine users' search interests and tackle previous challenges. (i) EGIN utilizes query and item's correlation and sequential information from the search system to build a heterogeneous graph for better CTR prediction in e-commerce search. (ii) EGIN's graph embedding learning shares the same training input and is jointly trained with CTR prediction, making the end-to-end framework effortless to deploy in large-scale search systems. The proposed EGIN is composed of three parts: query-item heterogeneous graph, light-weight graph sampling, and multi-interest network. The query-item heterogeneous graph captures correlation and sequential information of query and item efficiently by the proposed light-weight graph sampling. The multi-interest network is well designed to utilize graph embedding to capture various similarity relationships between query and item to enhance the final CTR prediction. We conduct extensive experiments on both public and industrial datasets to demonstrate the effectiveness of the proposed EGIN. At the same time, the training cost of graph learning is relatively low compared with the main CTR prediction task, ensuring efficiency in practical applications.
Abstract:Adversarial training methods commonly generate independent initial perturbation for adversarial samples from a simple uniform distribution, and obtain the training batch for the classifier without selection. In this work, we propose a simple yet effective training framework called Batch-in-Batch (BB) to enhance models robustness. It involves specifically a joint construction of initial values that could simultaneously generates $m$ sets of perturbations from the original batch set to provide more diversity for adversarial samples; and also includes various sample selection strategies that enable the trained models to have smoother losses and avoid overconfident outputs. Through extensive experiments on three benchmark datasets (CIFAR-10, SVHN, CIFAR-100) with two networks (PreActResNet18 and WideResNet28-10) that are used in both the single-step (Noise-Fast Gradient Sign Method, N-FGSM) and multi-step (Projected Gradient Descent, PGD-10) adversarial training, we show that models trained within the BB framework consistently have higher adversarial accuracy across various adversarial settings, notably achieving over a 13% improvement on the SVHN dataset with an attack radius of 8/255 compared to the N-FGSM baseline model. Furthermore, experimental analysis of the efficiency of both the proposed initial perturbation method and sample selection strategies validates our insights. Finally, we show that our framework is cost-effective in terms of computational resources, even with a relatively large value of $m$.
Abstract:The nature of diversity in real-world environments necessitates neural network models to expand from closed category settings to accommodate novel emerging categories. In this paper, we study the open-vocabulary object detection (OVD), which facilitates the detection of novel object classes under the supervision of only base annotations and open-vocabulary knowledge. However, we find that the inadequacy of neighboring relationships between regions during the alignment process inevitably constrains the performance on recent distillation-based OVD strategies. To this end, we propose Neighboring Region Attention Alignment (NRAA), which performs alignment within the attention mechanism of a set of neighboring regions to boost the open-vocabulary inference. Specifically, for a given proposal region, we randomly explore the neighboring boxes and conduct our proposed neighboring region attention (NRA) mechanism to extract relationship information. Then, this interaction information is seamlessly provided into the distillation procedure to assist the alignment between the detector and the pre-trained vision-language models (VLMs). Extensive experiments validate that our proposed model exhibits superior performance on open-vocabulary benchmarks.
Abstract:Instance segmentation is a fundamental research in computer vision, especially in autonomous driving. However, manual mask annotation for instance segmentation is quite time-consuming and costly. To address this problem, some prior works attempt to apply weakly supervised manner by exploring 2D or 3D boxes. However, no one has ever successfully segmented 2D and 3D instances simultaneously by only using 2D box annotations, which could further reduce the annotation cost by an order of magnitude. Thus, we propose a novel framework called Multimodal Weakly Supervised Instance Segmentation (MWSIS), which incorporates various fine-grained label generation and correction modules for both 2D and 3D modalities to improve the quality of pseudo labels, along with a new multimodal cross-supervision approach, named Consistency Sparse Cross-modal Supervision (CSCS), to reduce the inconsistency of multimodal predictions by response distillation. Particularly, transferring the 3D backbone to downstream tasks not only improves the performance of the 3D detectors, but also outperforms fully supervised instance segmentation with only 5% fully supervised annotations. On the Waymo dataset, the proposed framework demonstrates significant improvements over the baseline, especially achieving 2.59% mAP and 12.75% mAP increases for 2D and 3D instance segmentation tasks, respectively. The code is available at https://github.com/jiangxb98/mwsis-plugin.
Abstract:Few-shot semantic segmentation is the task of learning to locate each pixel of the novel class in the query image with only a few annotated support images. The current correlation-based methods construct pair-wise feature correlations to establish the many-to-many matching because the typical prototype-based approaches cannot learn fine-grained correspondence relations. However, the existing methods still suffer from the noise contained in naive correlations and the lack of context semantic information in correlations. To alleviate these problems mentioned above, we propose a Feature-Enhanced Context-Aware Network (FECANet). Specifically, a feature enhancement module is proposed to suppress the matching noise caused by inter-class local similarity and enhance the intra-class relevance in the naive correlation. In addition, we propose a novel correlation reconstruction module that encodes extra correspondence relations between foreground and background and multi-scale context semantic features, significantly boosting the encoder to capture a reliable matching pattern. Experiments on PASCAL-$5^i$ and COCO-$20^i$ datasets demonstrate that our proposed FECANet leads to remarkable improvement compared to previous state-of-the-arts, demonstrating its effectiveness.
Abstract:Video question answering (VideoQA) is an essential task in vision-language understanding, which has attracted numerous research attention recently. Nevertheless, existing works mostly achieve promising performances on short videos of duration within 15 seconds. For VideoQA on minute-level long-term videos, those methods are likely to fail because of lacking the ability to deal with noise and redundancy caused by scene changes and multiple actions in the video. Considering the fact that the question often remains concentrated in a short temporal range, we propose to first locate the question to a segment in the video and then infer the answer using the located segment only. Under this scheme, we propose "Locate before Answering" (LocAns), a novel approach that integrates a question locator and an answer predictor into an end-to-end model. During the training phase, the available answer label not only serves as the supervision signal of the answer predictor, but also is used to generate pseudo temporal labels for the question locator. Moreover, we design a decoupled alternative training strategy to update the two modules separately. In the experiments, LocAns achieves state-of-the-art performance on two modern long-term VideoQA datasets NExT-QA and ActivityNet-QA, and its qualitative examples show the reliable performance of the question localization.
Abstract:Recent works on multi-modal emotion recognition move towards end-to-end models, which can extract the task-specific features supervised by the target task compared with the two-phase pipeline. However, previous methods only model the feature interactions between the textual and either acoustic and visual modalities, ignoring capturing the feature interactions between the acoustic and visual modalities. In this paper, we propose the multi-modal end-to-end transformer (ME2ET), which can effectively model the tri-modal features interaction among the textual, acoustic, and visual modalities at the low-level and high-level. At the low-level, we propose the progressive tri-modal attention, which can model the tri-modal feature interactions by adopting a two-pass strategy and can further leverage such interactions to significantly reduce the computation and memory complexity through reducing the input token length. At the high-level, we introduce the tri-modal feature fusion layer to explicitly aggregate the semantic representations of three modalities. The experimental results on the CMU-MOSEI and IEMOCAP datasets show that ME2ET achieves the state-of-the-art performance. The further in-depth analysis demonstrates the effectiveness, efficiency, and interpretability of the proposed progressive tri-modal attention, which can help our model to achieve better performance while significantly reducing the computation and memory cost. Our code will be publicly available.
Abstract:Video moment retrieval aims at finding the start and end timestamps of a moment (part of a video) described by a given natural language query. Fully supervised methods need complete temporal boundary annotations to achieve promising results, which is costly since the annotator needs to watch the whole moment. Weakly supervised methods only rely on the paired video and query, but the performance is relatively poor. In this paper, we look closer into the annotation process and propose a new paradigm called "glance annotation". This paradigm requires the timestamp of only one single random frame, which we refer to as a "glance", within the temporal boundary of the fully supervised counterpart. We argue this is beneficial because comparing to weak supervision, trivial cost is added yet more potential in performance is provided. Under the glance annotation setting, we propose a method named as Video moment retrieval via Glance Annotation (ViGA) based on contrastive learning. ViGA cuts the input video into clips and contrasts between clips and queries, in which glance guided Gaussian distributed weights are assigned to all clips. Our extensive experiments indicate that ViGA achieves better results than the state-of-the-art weakly supervised methods by a large margin, even comparable to fully supervised methods in some cases.