Abstract:Deep learning models have shown strong performance in load forecasting, but they generally require large amounts of data for model training before being applied to new scenarios, which limits their effectiveness in data-scarce scenarios. Inspired by the great success of pre-trained language models (LLMs) in natural language processing, this paper proposes a zero-shot load forecasting approach using an advanced LLM framework denoted as the Chronos model. By utilizing its extensive pre-trained knowledge, the Chronos model enables accurate load forecasting in data-scarce scenarios without the need for extensive data-specific training. Simulation results across five real-world datasets demonstrate that the Chronos model significantly outperforms nine popular baseline models for both deterministic and probabilistic load forecasting with various forecast horizons (e.g., 1 to 48 hours), even though the Chronos model is neither tailored nor fine-tuned to these specific load datasets. Notably, Chronos reduces root mean squared error (RMSE), continuous ranked probability score (CRPS), and quantile score (QS) by approximately 7.34%-84.30%, 19.63%-60.06%, and 22.83%-54.49%, respectively, compared to baseline models. These results highlight the superiority and flexibility of the Chronos model, positioning it as an effective solution in data-scarce scenarios.
Abstract:The nature of diversity in real-world environments necessitates neural network models to expand from closed category settings to accommodate novel emerging categories. In this paper, we study the open-vocabulary object detection (OVD), which facilitates the detection of novel object classes under the supervision of only base annotations and open-vocabulary knowledge. However, we find that the inadequacy of neighboring relationships between regions during the alignment process inevitably constrains the performance on recent distillation-based OVD strategies. To this end, we propose Neighboring Region Attention Alignment (NRAA), which performs alignment within the attention mechanism of a set of neighboring regions to boost the open-vocabulary inference. Specifically, for a given proposal region, we randomly explore the neighboring boxes and conduct our proposed neighboring region attention (NRA) mechanism to extract relationship information. Then, this interaction information is seamlessly provided into the distillation procedure to assist the alignment between the detector and the pre-trained vision-language models (VLMs). Extensive experiments validate that our proposed model exhibits superior performance on open-vocabulary benchmarks.
Abstract:Machine learning models have made significant progress in load forecasting, but their forecast accuracy is limited in cases where historical load data is scarce. Inspired by the outstanding performance of large language models (LLMs) in computer vision and natural language processing, this paper aims to discuss the potential of large time series models in load forecasting with scarce historical data. Specifically, the large time series model is constructed as a time series generative pre-trained transformer (TimeGPT), which is trained on massive and diverse time series datasets consisting of 100 billion data points (e.g., finance, transportation, banking, web traffic, weather, energy, healthcare, etc.). Then, the scarce historical load data is used to fine-tune the TimeGPT, which helps it to adapt to the data distribution and characteristics associated with load forecasting. Simulation results show that TimeGPT outperforms the benchmarks (e.g., popular machine learning models and statistical models) for load forecasting on several real datasets with scarce training samples, particularly for short look-ahead times. However, it cannot be guaranteed that TimeGPT is always superior to benchmarks for load forecasting with scarce data, since the performance of TimeGPT may be affected by the distribution differences between the load data and the training data. In practical applications, we can divide the historical data into a training set and a validation set, and then use the validation set loss to decide whether TimeGPT is the best choice for a specific dataset.
Abstract:Many contemporary studies utilize grid-based models for neural field representation, but a systematic analysis of grid-based models is still missing, hindering the improvement of those models. Therefore, this paper introduces a theoretical framework for grid-based models. This framework points out that these models' approximation and generalization behaviors are determined by grid tangent kernels (GTK), which are intrinsic properties of grid-based models. The proposed framework facilitates a consistent and systematic analysis of diverse grid-based models. Furthermore, the introduced framework motivates the development of a novel grid-based model named the Multiplicative Fourier Adaptive Grid (MulFAGrid). The numerical analysis demonstrates that MulFAGrid exhibits a lower generalization bound than its predecessors, indicating its robust generalization performance. Empirical studies reveal that MulFAGrid achieves state-of-the-art performance in various tasks, including 2D image fitting, 3D signed distance field (SDF) reconstruction, and novel view synthesis, demonstrating superior representation ability. The project website is available at https://sites.google.com/view/cvpr24-2034-submission/home.
Abstract:As an essential task in autonomous driving (AD), motion prediction aims to predict the future states of surround objects for navigation. One natural solution is to estimate the position of other agents in a step-by-step manner where each predicted time-step is conditioned on both observed time-steps and previously predicted time-steps, i.e., autoregressive prediction. Pioneering works like SocialLSTM and MFP design their decoders based on this intuition. However, almost all state-of-the-art works assume that all predicted time-steps are independent conditioned on observed time-steps, where they use a single linear layer to generate positions of all time-steps simultaneously. They dominate most motion prediction leaderboards due to the simplicity of training MLPs compared to autoregressive networks. In this paper, we introduce the GPT style next token prediction into motion forecasting. In this way, the input and output could be represented in a unified space and thus the autoregressive prediction becomes more feasible. However, different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations. To this end, we propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations, e.g., encoding the transformation between coordinate systems for spatial relativity while adopting RoPE for temporal relativity. Empirically, by equipping with the aforementioned tailored designs, the proposed method achieves state-of-the-art performance in the Waymo Open Motion and Waymo Interaction datasets. Notably, AMP outperforms other recent autoregressive motion prediction methods: MotionLM and StateTransformer, which demonstrates the effectiveness of the proposed designs.
Abstract:End-to-end differentiable learning for autonomous driving (AD) has recently become a prominent paradigm. One main bottleneck lies in its voracious appetite for high-quality labeled data e.g. 3D bounding boxes and semantic segmentation, which are notoriously expensive to manually annotate. The difficulty is further pronounced due to the prominent fact that the behaviors within samples in AD often suffer from long tailed distribution. In other words, a large part of collected data can be trivial (e.g. simply driving forward in a straight road) and only a few cases are safety-critical. In this paper, we explore a practically important yet under-explored problem about how to achieve sample and label efficiency for end-to-end AD. Specifically, we design a planning-oriented active learning method which progressively annotates part of collected raw data according to the proposed diversity and usefulness criteria for planning routes. Empirically, we show that our planning-oriented approach could outperform general active learning methods by a large margin. Notably, our method achieves comparable performance with state-of-the-art end-to-end AD methods - by using only 30% nuScenes data. We hope our work could inspire future works to explore end-to-end AD from a data-centric perspective in addition to methodology efforts.
Abstract:Deep neural networks (DNNs) are receiving increasing attention in wind power forecasting due to their ability to effectively capture complex patterns in wind data. However, their forecasted errors are severely limited by the local optimal weight issue in optimization algorithms, and their forecasted behavior also lacks interpretability. To address these two challenges, this paper firstly proposes simple but effective triple optimization strategies (TriOpts) to accelerate the training process and improve the model performance of DNNs in wind power forecasting. Then, permutation feature importance (PFI) and local interpretable model-agnostic explanation (LIME) techniques are innovatively presented to interpret forecasted behaviors of DNNs, from global and instance perspectives. Simulation results show that the proposed TriOpts not only drastically improve the model generalization of DNNs for both the deterministic and probabilistic wind power forecasting, but also accelerate the training process. Besides, the proposed PFI and LIME techniques can accurately estimate the contribution of each feature to wind power forecasting, which helps to construct feature engineering and understand how to obtain forecasted values for a given sample.
Abstract:Instance segmentation is a fundamental research in computer vision, especially in autonomous driving. However, manual mask annotation for instance segmentation is quite time-consuming and costly. To address this problem, some prior works attempt to apply weakly supervised manner by exploring 2D or 3D boxes. However, no one has ever successfully segmented 2D and 3D instances simultaneously by only using 2D box annotations, which could further reduce the annotation cost by an order of magnitude. Thus, we propose a novel framework called Multimodal Weakly Supervised Instance Segmentation (MWSIS), which incorporates various fine-grained label generation and correction modules for both 2D and 3D modalities to improve the quality of pseudo labels, along with a new multimodal cross-supervision approach, named Consistency Sparse Cross-modal Supervision (CSCS), to reduce the inconsistency of multimodal predictions by response distillation. Particularly, transferring the 3D backbone to downstream tasks not only improves the performance of the 3D detectors, but also outperforms fully supervised instance segmentation with only 5% fully supervised annotations. On the Waymo dataset, the proposed framework demonstrates significant improvements over the baseline, especially achieving 2.59% mAP and 12.75% mAP increases for 2D and 3D instance segmentation tasks, respectively. The code is available at https://github.com/jiangxb98/mwsis-plugin.
Abstract:To reduce the heavy computational burden of reactive power optimization of distribution networks, machine learning models are receiving increasing attention. However, most machine learning models (e.g., neural networks) are usually considered as black boxes, making it challenging for power system operators to identify and comprehend potential biases or errors in the decision-making process of machine learning models. To address this issue, an explainable machine-learning framework is proposed to optimize the reactive power in distribution networks. Firstly, a Shapley additive explanation framework is presented to measure the contribution of each input feature to the solution of reactive power optimizations generated from machine learning models. Secondly, a model-agnostic approximation method is developed to estimate Shapley values, so as to avoid the heavy computational burden associated with direct calculations of Shapley values. The simulation results show that the proposed explainable framework can accurately explain the solution of the machine learning model-based reactive power optimization by using visual analytics, from both global and instance perspectives. Moreover, the proposed explainable framework is model-agnostic, and thus applicable to various models (e.g., neural networks).
Abstract:Machine learning models (e.g., neural networks) achieve high accuracy in wind power forecasting, but they are usually regarded as black boxes that lack interpretability. To address this issue, the paper proposes a glass-box approach that combines exceptional accuracy with transparency for wind power forecasting. Specifically, advanced artificial intelligence methods (e.g., gradient boosting) are innovatively employed to create shape functions within the forecasting model. These functions effectively map the intricate non-linear relationships between wind power output and input features. Furthermore, the forecasting model is enriched by incorporating interaction terms that adeptly capture interdependencies and synergies among the input features. Simulation results show that the proposed glass-box approach effectively interprets the results of wind power forecasting from both global and instance perspectives. Besides, it outperforms most benchmark models and exhibits comparable performance to the best-performing neural networks. This dual strength of transparency and high accuracy positions the proposed glass-box approach as a compelling choice for reliable wind power forecasting.