Abstract:Deep neural networks (DNNs) are receiving increasing attention in wind power forecasting due to their ability to effectively capture complex patterns in wind data. However, their forecasted errors are severely limited by the local optimal weight issue in optimization algorithms, and their forecasted behavior also lacks interpretability. To address these two challenges, this paper firstly proposes simple but effective triple optimization strategies (TriOpts) to accelerate the training process and improve the model performance of DNNs in wind power forecasting. Then, permutation feature importance (PFI) and local interpretable model-agnostic explanation (LIME) techniques are innovatively presented to interpret forecasted behaviors of DNNs, from global and instance perspectives. Simulation results show that the proposed TriOpts not only drastically improve the model generalization of DNNs for both the deterministic and probabilistic wind power forecasting, but also accelerate the training process. Besides, the proposed PFI and LIME techniques can accurately estimate the contribution of each feature to wind power forecasting, which helps to construct feature engineering and understand how to obtain forecasted values for a given sample.
Abstract:Machine learning models (e.g., neural networks) achieve high accuracy in wind power forecasting, but they are usually regarded as black boxes that lack interpretability. To address this issue, the paper proposes a glass-box approach that combines exceptional accuracy with transparency for wind power forecasting. Specifically, advanced artificial intelligence methods (e.g., gradient boosting) are innovatively employed to create shape functions within the forecasting model. These functions effectively map the intricate non-linear relationships between wind power output and input features. Furthermore, the forecasting model is enriched by incorporating interaction terms that adeptly capture interdependencies and synergies among the input features. Simulation results show that the proposed glass-box approach effectively interprets the results of wind power forecasting from both global and instance perspectives. Besides, it outperforms most benchmark models and exhibits comparable performance to the best-performing neural networks. This dual strength of transparency and high accuracy positions the proposed glass-box approach as a compelling choice for reliable wind power forecasting.
Abstract:Accurate short-term solar and wind power predictions play an important role in the planning and operation of power systems. However, the short-term power prediction of renewable energy has always been considered a complex regression problem, owing to the fluctuation and intermittence of output powers and the law of dynamic change with time due to local weather conditions, i.e. spatio-temporal correlation. To capture the spatio-temporal features simultaneously, this paper proposes a new graph neural network-based short-term power forecasting approach, which combines the graph convolutional network (GCN) and long short-term memory (LSTM). Specifically, the GCN is employed to learn complex spatial correlations between adjacent renewable energies, and the LSTM is used to learn dynamic changes of power curves. The simulation results show that the proposed hybrid approach can model the spatio-temporal correlation of renewable energies, and its performance outperforms popular baselines on real-world datasets.
Abstract:Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.